Sequence determinants for the recognition of the fork junction DNA containing the-10 region of promoter DNA by E-coli RNA polymerase

被引:47
作者
Matlock, DL [1 ]
Heyduk, T [1 ]
机构
[1] St Louis Univ, Sch Med, EA Doisy Dept Biochem & Mol Biol, St Louis, MO 63128 USA
关键词
D O I
10.1021/bi001433h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has been recently suggested that E. coli RNA polymerase can specifically recognize a fork junction DNA structure, suggesting a possible role for such interaction in promoter DNA melting [Guo, Y., and Gralla, J. D, (1998) Proc, Natl. Acad. Sci. U.S.A, 95, 11655-11660]. We have determined here quantitatively, using a site-specific binding assay, the effects of base substitutions within the conserved -10 hexamer in the context of a short fork junction DNA on binding to RNA polymerase. Adenine at position -11 and thymine at position -7 were found to be critical for sequence-specific recognition of the DNA. The identities of bases at positions -9 and -8 were found to be not important for the binding whereas replacement of bases at positions -12 and -10 had a mild negative effect on the binding affinity. It was found that for the binding of fork DNA to RNA polymerase, specific sequence recognition was more important than specific recognition of fork junction DNA structure. The pattern of relative importance of bases in the -10 region for binding RNA polymerase was generally consistent with the sequence conservation pattern observed in nature where positions -11 and -7 are the most conserved. Binding experiments with a series of adenine analogues at position -11 revealed that the N1 nitrogen of adenine was a critical determinant for the preference of the adenine at this position, suggesting a mechanism for the nucleation of promoter DNA melting initiation in which RNA polymerase destabilizes duplex DNA by directly competing with the thymine of the A-T base pair for hydrogen bonding to the N1 position of the -11 nontemplate strand adenine.
引用
收藏
页码:12274 / 12283
页数:10
相关论文
共 41 条
[1]   Identification of RNA polymerase β′ subunit segment contacting the melted region of the lacUV5 promoter [J].
Brodolin, K ;
Mustaev, A ;
Severinov, K ;
Nikiforov, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (05) :3661-3666
[2]   FACTOR STIMULATING TRANSCRIPTION BY RNA POLYMERASE [J].
BURGESS, RR ;
TRAVERS, AA ;
DUNN, JJ ;
BAUTZ, EKF .
NATURE, 1969, 221 (5175) :43-&
[3]   PROCEDURE FOR RAPID, LARGE-SCALE PURIFICATION OF ESCHERICHIA-COLI DNA-DEPENDENT RNA-POLYMERASE INVOLVING POLYMIN-P PRECIPITATION AND DNA-CELLULOSE CHROMATOGRAPHY [J].
BURGESS, RR ;
JENDRISAK, JJ .
BIOCHEMISTRY, 1975, 14 (21) :4634-4638
[4]   Core RNA polymerase from E-coli induces a major change in the domain arrangement of the σ70 subunit [J].
Callaci, S ;
Heyduk, E ;
Heyduk, T .
MOLECULAR CELL, 1999, 3 (02) :229-238
[5]   Conformational changes of Escherichia coli RNA polymerase σ70 factor induced by binding to the core enzyme [J].
Callaci, S ;
Heyduk, E ;
Heyduk, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32995-33001
[6]   Conformation and DNA binding properties of a single-stranded DNA binding region of σ70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme [J].
Callaci, S ;
Heyduk, T .
BIOCHEMISTRY, 1998, 37 (10) :3312-3320
[7]  
Chamberlin J.M., 1976, RNA POLYMERASE, V17, P17
[8]   HO-CENTER-DOT AND DNASE-I PROBING OF E-SIGMA(70) RNA POLYMERASE-LAMBDA-P-R PROMOTER OPEN COMPLEXES - MG2+ BINDING AND ITS STRUCTURAL CONSEQUENCES AT THE TRANSCRIPTION START SITE [J].
CRAIG, ML ;
SUH, WC ;
RECORD, MT .
BIOCHEMISTRY, 1995, 34 (48) :15624-15632
[9]  
DEHASETH P L, 1978, Biochemistry, V17, P1612, DOI 10.1021/bi00602a006
[10]   OPEN COMPLEX-FORMATION BY ESCHERICHIA-COLI RNA-POLYMERASE - THE MECHANISM OF POLYMERASE-INDUCED STRAND SEPARATION OF DOUBLE-HELICAL DNA [J].
DEHASETH, PL ;
HELMANN, JD .
MOLECULAR MICROBIOLOGY, 1995, 16 (05) :817-824