Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification

被引:179
作者
Furusawa, T
Tsutsumi, A
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] CREST, Japan Sci & Technol Agcy, Kawaguchi 3320012, Japan
基金
日本科学技术振兴机构;
关键词
cobalt catalyst; nickel catalyst; steam reforming; naphthalene; biomass; tar;
D O I
10.1016/j.apcata.2004.09.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic performances of 12 wt.% Co/MgO catalyst pre-calcined at 873 K and of Ni catalysts for the steam reforming of naphthalene were investigated. The results of characterizations (TPR, XRD, and CO adsorption) for Ni catalysts showed that Ni metal particles were formed over the catalysts pre-calcined at 873 K with high Ni loading via reduction of NiO-MgO phases. A few Ni metal particles were obtained over the catalysts pre-calcined at 1173 K with all Ni loading values. The catalytic performance data showed that Co/MgO catalyst had higher activity (conv., 23%, 3 h) than any kinds of Ni/MgO catalysts tested in this study, under lower steam/carbon mote ratio (0.6) and higher concentration of fed naphthalene (3.5 mol%) than those used in the other works. The steam reforming of naphthalene proceeded when there was a stoichiometric ratio between the carbon atoms of naphthalene and H2O over Co catalyst; however, the activation of excess H2O happened over the Ni catalyst and this phenomenon can lead to having lower activity than Co catalyst. We concluded that these observations should be attributed to different catalytic performances between Co/MgO and Ni/MgO catalysts. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 212
页数:6
相关论文
共 33 条
[1]   IMPROVED STEAM GASIFICATION OF LIGNOCELLULOSIC RESIDUES IN A FLUIDIZED-BED WITH COMMERCIAL STEAM REFORMING CATALYSTS [J].
AZNAR, MP ;
CORELLA, J ;
DELGADO, J ;
LAHOZ, JQ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (01) :1-10
[2]   Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal [J].
Aznar, MP ;
Caballero, MA ;
Gil, J ;
Martin, JA ;
Corella, J .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (07) :2668-2680
[3]  
Baker E, 1985, FUNDAMENTALS THERMOC, P863
[4]   STEAM GASIFICATION OF BIOMASS WITH NICKEL SECONDARY CATALYSTS [J].
BAKER, EG ;
MUDGE, LK ;
BROWN, MD .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1987, 26 (07) :1335-1339
[5]   Steam reforming of naphthalene on Ni-Cr/Al2O3 catalysts doped with MgO, TiO2, and La2O3 [J].
Bangala, DN ;
Abatzoglou, N ;
Chornet, E .
AICHE JOURNAL, 1998, 44 (04) :927-936
[6]   Mechanisms of catalyst deactivation [J].
Bartholomew, CH .
APPLIED CATALYSIS A-GENERAL, 2001, 212 (1-2) :17-60
[7]   Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts [J].
Caballero, MA ;
Corella, J ;
Aznar, MP ;
Gil, J .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (05) :1143-1154
[8]   Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures .1. Hot gas upgrading by the catalytic reactor [J].
Caballero, MA ;
Aznar, MP ;
Gil, J ;
Martin, JA ;
Frances, E ;
Corella, J .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (12) :5227-5239
[9]   LOW-TEMPERATURE SELECTIVE OXIDATION OF METHANE TO CARBON-MONOXIDE AND HYDROGEN OVER COBALT MGO CATALYSTS [J].
CHOUDHARY, VR ;
SANSARE, SD ;
MAMMAN, AS .
APPLIED CATALYSIS A-GENERAL, 1992, 90 (01) :L1-L5
[10]   Steam reforming model compounds of biomass gasification tars:: conversion at different operating conditions and tendency towards coke formation [J].
Coll, R ;
Salvadó, J ;
Farriol, X ;
Montané, D .
FUEL PROCESSING TECHNOLOGY, 2001, 74 (01) :19-31