Image classification using chaotic particle swarm optimization

被引:15
作者
Chandramouli, Krishna [1 ]
Izquierdo, Ebroul [1 ]
机构
[1] Univ London, Multimedia & Vis Res Grp, Mile End Rd, London E1 4NS, England
来源
2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS | 2006年
关键词
image classification; particle swarm optimization; chaos theory; self organizing feature maps; genetic algorithm and evolutionary computation;
D O I
10.1109/ICIP.2006.312968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle Swarm Optimization is one of several metaheuristic algorithms inspired by biological systems. The chaotic modeling of particle swarm optimization is presented in this paper with application to image classification. The performance of this modified particle swarm optimization algorithm is compared with standard particle swarm optimization. Numerical results of this comparative study are performed on binary classes of images from the Corel dataset.
引用
收藏
页码:3001 / +
页数:2
相关论文
共 10 条
[1]  
BOERINGER DW, 2003, IEEE S ANT PROP SOC, V1, P181
[2]  
Corne David., 1999, NEW IDEAS OPTIMIZATI
[3]  
EBERHART R, 6 INT S MICR MACH HU, P39
[4]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
[5]  
FOGEL DB, 1994, IEEE T NEURAL NETWOR, V5, P1
[6]   A hybrid boundary condition for robust particle swarm optimization [J].
Huang, T ;
Mohan, AS .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4 :112-117
[7]   THE SELF-ORGANIZING MAP [J].
KOHONEN, T .
PROCEEDINGS OF THE IEEE, 1990, 78 (09) :1464-1480
[8]  
Meng HJ, 2004, CONF CYBERN INTELL S, P367
[9]   Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J].
Ratnaweera, A ;
Halgamuge, SK ;
Watson, HC .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :240-255
[10]   Survey of clustering algorithms [J].
Xu, R ;
Wunsch, D .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (03) :645-678