Termination of multifractal behavior for critical disordered Dirac fermions

被引:37
作者
Caux, JS
Taniguchi, N
Tsvelik, AM
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3NP, England
[2] Hiroshima Univ, Dept Phys Elect, Higashihiroshima 739, Japan
关键词
D O I
10.1103/PhysRevLett.80.1276
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Dirac fermions interacting with a disordered non-Abelian vector potential. The exact solution is obtained through a special type of conformal field theory including logarithmic correlators, without resorting to the replica or supersymmetry approaches. It is shown that the proper treatment of. the conformal theory leads to a different multifractal scaling behavior than initially expected. Moreover, the previous replica solution is found to be incorrect at the level of higher correlation functions.
引用
收藏
页码:1276 / 1279
页数:4
相关论文
共 27 条
[1]  
ALTSHULER BL, 1991, MESOSCOPIC PHENOMENA, P449
[2]   CRITICAL-BEHAVIOR OF EXTENDED STATES IN DISORDERED-SYSTEMS [J].
AOKI, H .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (06) :L205-L208
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]  
BERNARD D, HEPTH9509137
[5]   Exact calculation of multifractal exponents of the critical wave function of Dirac fermions in a random magnetic field [J].
Castillo, HE ;
Chamon, CDC ;
Fradkin, E ;
Goldbart, PM ;
Mudry, C .
PHYSICAL REVIEW B, 1997, 56 (16) :10668-10677
[6]   Logarithmic operators and dynamical extension of the symmetry group in the bosonic SU(2)(0) and SUSY SU(2)(2) WZNW models [J].
Caux, JS ;
Kogan, I ;
Lewis, A ;
Tsvelik, AM .
NUCLEAR PHYSICS B, 1997, 489 (1-2) :469-484
[7]   Logarithmic operators and hidden continuous symmetry in critical disordered models [J].
Caux, JS ;
Kogan, II ;
Tsvelik, AM .
NUCLEAR PHYSICS B, 1996, 466 (03) :444-462
[8]  
CAUX JS, CONDMAT9801055
[9]   Localization in two dimensions Gaussian field theories, and multifractality [J].
Chamon, C ;
Mudry, C ;
Wen, XG .
PHYSICAL REVIEW LETTERS, 1996, 77 (20) :4194-4197
[10]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348