The molecular basis for the chemical denaturation of proteins by urea

被引:741
作者
Bennion, BJ [1 ]
Daggett, V [1 ]
机构
[1] Univ Washington, Dept Med Chem, Seattle, WA 98195 USA
关键词
D O I
10.1073/pnas.0930122100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular dynamics simulations of the protein chymotrypsin inhibitor 2 in 8 M urea at 60degreesC were undertaken to investigate the molecular basis of chemical denaturation. The protein unfolded rapidly under these conditions, but it retained its native structure in a control simulation in water at the same temperature. The overall process of unfolding in urea was similar to that observed in thermal denaturation simulations above the protein's T-m of 75degreesC. The first step in unfolding was expansion of the hydrophobic core. Then, the core was solvated by water and later by urea. The denatured structures in both urea and at high temperature contained residual native helical structure, whereas the beta-structure was completely disrupted. The average residence time for urea around hydrophilic groups was six times greater than around hydrophobic residues and in all cases greater than the corresponding water residence times. Water self-diffusion was reduced 40% in 8 M urea. Urea altered water structure and dynamics, thereby diminishing the hydrophobic effect and encouraging solvation of hydrophobic groups. In addition, through urea's weakening of water structure, water became free to compete with intraprotein interactions. Urea also interacted directly with polar residues and the peptide backbone, thereby stabilizing nonnative conformations. These simulations suggest that urea denatures proteins via both direct and indirect mechanisms.
引用
收藏
页码:5142 / 5147
页数:6
相关论文
共 56 条
[1]   SOLVENT DENATURATION AND STABILIZATION OF GLOBULAR-PROTEINS [J].
ALONSO, DOV ;
DILL, KA .
BIOCHEMISTRY, 1991, 30 (24) :5974-5985
[2]   MOLECULAR-DYNAMICS SIMULATIONS OF PROTEIN UNFOLDING AND LIMITED REFOLDING - CHARACTERIZATION OF PARTIALLY UNFOLDED STATES OF UBIQUITIN IN 60-PERCENT METHANOL AND IN WATER [J].
ALONSO, DOV ;
DAGGETT, V .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (03) :501-520
[3]   Generalized derivation of an exact relationship linking different coefficients that characterize thermodynamic effects of preferential interactions [J].
Anderson, CF ;
Felitsky, DJ ;
Hong, J ;
Record, MT .
BIOPHYSICAL CHEMISTRY, 2002, 101 :497-511
[4]   PROTEIN STABILIZATION AND DESTABILIZATION BY GUANIDINIUM SALTS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1984, 23 (25) :5924-5929
[5]   MECHANISM OF PROTEIN SALTING IN AND SALTING OUT BY DIVALENT-CATION SALTS - BALANCE BETWEEN HYDRATION AND SALT BINDING [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1984, 23 (25) :5912-5923
[6]   Structural details of urea binding to barnase: a molecular dynamics analysis [J].
Caflisch, A ;
Karplus, M .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (05) :477-488
[7]   Rationalization of the enantioselectivity of subtilisin in DMF [J].
Colombo, G ;
Toba, S ;
Merz, KM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (14) :3486-3493
[8]   Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water-accessible surface area [J].
Courtenay, ES ;
Capp, MW ;
Record, MT .
PROTEIN SCIENCE, 2001, 10 (12) :2485-2497
[9]   Stability of folded conformations [J].
Creighton, Thomas E. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1991, 1 (01) :5-16
[10]   Structure of the transition state for folding of a protein derived from experiment and simulation [J].
Daggett, V ;
Li, AJ ;
Itzhaki, LS ;
Otzen, DE ;
Fersht, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (02) :430-440