Advanced statistics: Missing data in clinical research - Part 2: Multiple imputation

被引:219
作者
Newgard, Craig D. [1 ]
Haukoos, Jason S.
机构
[1] Oregon Hlth & Sci Univ, Ctr Policy & Res Emergency Med, Dept Emergency Med, Portland, OR 97201 USA
[2] Univ Colorado, Denver Hlth Med Ctr, Dept Emergency Med, Denver, CO USA
[3] Univ Colorado, Hlth Sci Ctr, Dept Prevent Med & Biometr, Denver, CO USA
关键词
missing data; bias; clinical research; imputation; multiple imputation; statistical analysis;
D O I
10.1197/j.aem.2006.11.038
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
In part I of this series, the authors describe the importance of incomplete data in clinical research, and provide a conceptual framework for handling incomplete data by describing typical mechanisms and patterns of censoring, and detailing a variety of relatively simple methods and their limitations. In part 2, the authors will explore multiple imputation (MI), a more sophisticated and valid method for handling incomplete data in clinical research. This article will provide a detailed conceptual framework for MI, comparative examples of MI versus naive methods for handling incomplete data (and how different methods may impact subsequent study results), plus a practical user's guide to implementing MI, including sample statistical software MI code and a deidentified preceded database for use with the sample code.
引用
收藏
页码:669 / 678
页数:10
相关论文
共 38 条
[1]   Missing data techniques for structural equation modeling [J].
Allison, PD .
JOURNAL OF ABNORMAL PSYCHOLOGY, 2003, 112 (04) :545-557
[2]  
Allison PD., 2001, MISSING DATA SAGE U
[3]   The methods for handling missing data in clinical trials influence sample size requirements [J].
Auleley, GR ;
Giraudeau, B ;
Baron, G ;
Maillefert, JF ;
Dougados, M ;
Ravaud, P .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2004, 57 (05) :447-453
[4]   Applications of multiple imputation in medical studies: from AIDS as NHANES [J].
Barnard, J ;
Meng, XL .
STATISTICAL METHODS IN MEDICAL RESEARCH, 1999, 8 (01) :17-36
[5]   A comparison of inclusive and restrictive strategies in modern missing data procedures [J].
Collins, LM ;
Schafer, JL ;
Kam, CM .
PSYCHOLOGICAL METHODS, 2001, 6 (04) :330-351
[6]   A COMPARISON OF ANALYTIC METHODS FOR NONRANDOM MISSINGNESS OF OUTCOME DATA [J].
CRAWFORD, SL ;
TENNSTEDT, SL ;
MCKINLAY, JB .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1995, 48 (02) :209-219
[7]   Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out [J].
Demirtas, H .
STATISTICS IN MEDICINE, 2005, 24 (15) :2345-2363
[8]  
Gelman A, 1996, Stat Methods Med Res, V5, P339, DOI 10.1177/096228029600500402
[9]   A critical look at methods for handling missing covariates in epidemiologic regression analyses [J].
Greenland, S ;
Finkle, WD .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 142 (12) :1255-1264
[10]   Advanced statistics: Missing data in clinical research - Part 1: An introduction and conceptual framework [J].
Haukoos, Jason S. ;
Newgard, Craig D. .
ACADEMIC EMERGENCY MEDICINE, 2007, 14 (07) :662-668