Tagging and detection strategies for activity-based proteomics

被引:195
作者
Sadaghiani, Amir M.
Verhelst, Steven H. L.
Bogyo, Matthew [1 ]
机构
[1] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.cbpa.2006.11.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The field of activity-based proteomics is a relatively new discipline that makes use of small molecules, termed activity-based probes (ABPs), to tag and monitor distinct sets of proteins within a complex proteome. These activity-dependant labels facilitate analysis of systems-wide changes at the level of enzyme activity rather than simple protein abundance. While the use of small molecule inhibitors to label enzyme targets is not a new concept, the past ten years have seen a rapid expansion in the diversity of probe families that have been developed. In addition to increasing the number and types of enzymes that can be targeted by this method, there has also been an increase in the number of methods used to visualize probes once they are bound to target enzymes. In particular, the use of small organic fluorophores; has created a wealth of applications for ABPs that range from biochemical profiling of diverse proteomes to direct imaging of active enzymes in live cells and even whole animals. In addition, the advent of new bioorthogonal coupling chemistries now enables a diverse array of tags to be added after targets are labeled with an ABP. This strategy has opened the door to new in vivo applications for activity-based proteomic methods.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 46 条
[1]  
BARUCH A, 2004, CURRENT PROTOCOLS PR
[2]  
Berger Alicia B, 2004, Am J Pharmacogenomics, V4, P371, DOI 10.2165/00129785-200404060-00004
[3]   Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib [J].
Berkers, CR ;
Verdoes, M ;
Lichtman, E ;
Fiebiger, E ;
Kessler, BM ;
Anderson, KC ;
Ploegh, HL ;
Ovaa, H ;
Galardy, PJ .
NATURE METHODS, 2005, 2 (05) :357-362
[4]   Dynamic imaging of protease activity with fluorescently quenched activity-based probes [J].
Blum, G ;
Mullins, SR ;
Keren, K ;
Fonovic, M ;
Jedeszko, C ;
Rice, MJ ;
Sloane, BF ;
Bogyo, M .
NATURE CHEMICAL BIOLOGY, 2005, 1 (04) :203-209
[5]   Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs [J].
Bogyo, M ;
Verhelst, S ;
Bellingard-Dubouchaud, V ;
Toba, S ;
Greenbaum, D .
CHEMISTRY & BIOLOGY, 2000, 7 (01) :27-38
[6]   Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors [J].
Bogyo, M ;
McMaster, JS ;
Gaczynska, M ;
Tortorella, D ;
Goldberg, AL ;
Ploegh, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (13) :6629-6634
[7]   Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme [J].
Borodovsky, A ;
Ovaa, H ;
Kolli, N ;
Gan-Erdene, T ;
Wilkinson, KD ;
Ploegh, HL ;
Kessler, BM .
CHEMISTRY & BIOLOGY, 2002, 9 (10) :1149-1159
[8]   A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14 [J].
Borodovsky, A ;
Kessler, BM ;
Casagrande, R ;
Overkleeft, HS ;
Wilkinson, KD ;
Ploegh, HL .
EMBO JOURNAL, 2001, 20 (18) :5187-5196
[9]   Developing photoactive affinity probes for proteomic profiling: Hydroxamate-based probes for metalloproteases [J].
Chan, EWS ;
Chattopadhaya, S ;
Panicker, RC ;
Huang, X ;
Yao, SQ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (44) :14435-14446
[10]   Near-infrared fluorescent Imaging of matrix metalloproteinase activity after myocardial infarction [J].
Chen, JQ ;
Tung, CH ;
Allport, JR ;
Chen, S ;
Weissleder, R ;
Huang, PL .
CIRCULATION, 2005, 111 (14) :1800-1805