Thin polystyrene films supported by oxidized silicon (SiOx/Si) substrates may be unstable or metastable, depending on the film thickness, h, and can ultimately dewet the substrate when heated above their glass transition. In the metastable regime, holes nucleate throughout the film and subsequently grow due to capillary driving forces. Recent studies have shown that the addition of a second component, such as a copolymer or miscible polymer, can suppress the dewetting process and stabilize the film. We examined the hole growth dynamics and the hole morphology in thin film mixtures composed of polystyrene and tetramethyl bisphenol-A polycarbonate (TMPC) supported by SiOx/Si substrates. The hole growth velocity decreased with increasing TMPC content beyond that expected from changes in the bulk viscosity. The authors show that the suppression of the dewetting velocity is primarily due to reductions in the capillary driving force for dewetting and to increased friction at the substrate-polymer interface. The viscosity, as determined from the hole growth dynamics, decreases with decreasing film thickness, and is connected to a depression of the glass transition of the film. (c) 2007 American Institute of Physics.