Impact of transposable elements on the organization and function of allopolyploid genomes

被引:194
作者
Parisod, Christian [1 ,2 ]
Alix, Karine [3 ]
Just, Jeremy [4 ]
Petit, Maud [1 ]
Sarilar, Veronique [3 ]
Mhiri, Corinne [1 ]
Ainouche, Malika [5 ]
Chalhoub, Boulos [4 ]
Grandbastien, Marie-Angele [1 ]
机构
[1] INRA, Biol Cellulaire Lab, Inst Jean Pierre Bourgin, F-78026 Versailles, France
[2] Univ Oslo, Nat Hist Museum, Natl Ctr Biosystemat, N-0318 Oslo, Norway
[3] Univ Paris 11, INRA, CNRS, UMR Genet Vegetale, F-91190 Gif Sur Yvette, France
[4] INRA, Unite Rech Genom Vegetale, F-91057 Evry, France
[5] Univ Rennes 1, UMR ECOBIO 6553, F-35042 Rennes, France
基金
瑞士国家科学基金会;
关键词
allopolyploidy; diploidization; genome evolution; stress; transposable element; Viridiplantae; RETROTRANSPOSONS; EVOLUTION; SEQUENCE; POLYPLOIDY; ACTIVATION; REARRANGEMENTS; NICOTIANA; DIVERSITY; DYNAMICS; EVENTS;
D O I
10.1111/j.1469-8137.2009.03096.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Transposable elements (TEs) represent an important fraction of plant genomes and are likely to play a pivotal role in fuelling genome reorganization and functional changes following allopolyploidization. Various processes associated with allopolyploidy (i.e. genetic redundancy, bottlenecks during the formation of allopolyploids or genome shock following genome merging) may allow accumulation of TE insertions. Our objective in carrying out a survey of the literature and a comparative analysis across different allopolyploid systems is to shed light on the structural, epigenetic and functional modifications driven by TEs during allopolyploidization and subsequent diploidization. The available evidence indicates that TE proliferation in the short or the long term after allopolyploidization may be restricted to a few TEs, in specific polyploid systems. By contrast, data indicate major structural changes in the TE genome fraction immediately after allopolyploidization, mainly through losses of TE sequences as a result of recombination. Emerging evidence also suggests that TEs are targeted by substantial epigenetic changes, which may impact gene expression and genome stability. Furthermore, TEs may directly or indirectly support the evolution of new functionalities in allopolyploids during diploidization. All data stress allopolyploidization as a shock associated with drastic genome reorganization. Mechanisms controlling TEs during allopolyploidization as well as their impact on diploidization are discussed.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 41 条
[1]   Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae) [J].
Ainouche, M. L. ;
Fortune, P. M. ;
Salmon, A. ;
Parisod, C. ;
Grandbastien, M. -A. ;
Fukunaga, K. ;
Ricou, M. ;
Misset, M. -T. .
BIOLOGICAL INVASIONS, 2009, 11 (05) :1159-1173
[2]   The diversity of retroelements in diploid and allotetraploid Brassica species [J].
Alix, K ;
Heslop-Harrison, JS .
PLANT MOLECULAR BIOLOGY, 2004, 54 (06) :895-909
[3]   The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation [J].
Alix, Karine ;
Joets, Johann ;
Ryder, Carol D. ;
Moore, Jay ;
Barker, Guy C. ;
Bailey, John P. ;
King, Graham J. ;
Heslop-Harrison, John S. .
PLANT JOURNAL, 2008, 56 (06) :1030-1044
[4]  
[Anonymous], 2007, The Origins of Genome Architecture
[5]   The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp petraea as an alternative model system for the study of polyploidy in plants [J].
Beaulieu, Julien ;
Jean, Martine ;
Belzile, Francois .
MOLECULAR GENETICS AND GENOMICS, 2009, 281 (04) :421-435
[6]   Transposable elements, gene creation and genome rearrangement in flowering plants [J].
Bennetzen, JL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (06) :621-627
[7]   Polyploidization as a Retraction Force in Plant Genome Evolution: Sequence Rearrangements in Triticale [J].
Bento, Miguel ;
Pereira, H. Sofia ;
Rocheta, Margarida ;
Gustafson, Perry ;
Viegas, Wanda ;
Silva, Manuela .
PLOS ONE, 2008, 3 (01)
[8]   Transgenerational changes in the genome stability and methylation in pathogen-infected plants (Virus-induced plant genome instability) [J].
Boyko, Alexander ;
Kathiria, Palak ;
Zemp, Franz J. ;
Yao, Youli ;
Pogribny, Igor ;
Kovalchuk, Igor .
NUCLEIC ACIDS RESEARCH, 2007, 35 (05) :1714-1725
[9]   Uneven chromosome contraction and expansion in the maize genome [J].
Bruggmann, Remy ;
Bharti, Arvind K. ;
Gundlach, Heidrun ;
Lai, Jinsheng ;
Young, Sarah ;
Pontaroli, Ana C. ;
Wei, Fusheng ;
Haberer, Georg ;
Fuks, Galina ;
Du, Chunguang ;
Raymond, Christina ;
Estep, Matt C. ;
Liu, Renyi ;
Bennetzen, Jeffrey L. ;
Chan, Agnes P. ;
Rabinowicz, Pablo D. ;
Quackenbush, John ;
Barbazuk, W. Brad ;
Wing, Rod A. ;
Birren, Bruce ;
Nusbaum, Chad ;
Rounsley, Steve ;
Mayer, Klaus F. X. ;
Messing, Joachim .
GENOME RESEARCH, 2006, 16 (10) :1241-1251
[10]   Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and aegilops) [J].
Chantret, N ;
Salse, J ;
Sabot, F ;
Rahman, S ;
Bellec, A ;
Laubin, B ;
Dubois, I ;
Dossat, C ;
Sourdille, P ;
Joudrier, P ;
Gautier, MF ;
Cattolico, L ;
Beckert, M ;
Aubourg, S ;
Weissenbach, J ;
Caboche, M ;
Bernard, M ;
Leroy, P ;
Chalhoub, B .
PLANT CELL, 2005, 17 (04) :1033-1045