Molecular coupling of S4 to a K+ channel's slow inactivation gate

被引:84
作者
Loots, E [1 ]
Isacoff, EY [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
Shaker; rearrangement; voltage; gating; fluorescence;
D O I
10.1085/jgp.116.5.623
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The mechanism by which physiological signals regulate the conformation of molecular gates that open and close ion channels is poorly understood. Voltage clamp fluorometry was used to ask how the voltage sensing S4 transmembrane domain is coupled to the slow inactivation gate in the pore domain of the Shaker K+ channel. Fluorophores attached at several sites in S4 indicate that the voltage-sensing rearrangements are followed by an additional inactivation motion. Fluorophores attached at the perimeter of the pore domain indicate that the inactivation rearrangement projects from the selectivity filter out to the interface with the voltage-sensing domain. Some of the pore domain sites also sense activation, and this appears to be due to a direct interaction with S4 based on the finding that S4 comes into close enough proximity to the pore domain for a pore mutation to alter the nanoenvironment of an S4-attached fluorophore. We propose that activation produces an S4-pore domain interaction that disrupts a bond between the S4 contact site on the pore domain and the outer end of S6. Our results indicate that this bond holds the slow inactivation gate open and, therefore, we propose that this S4-induced bond disruption triggers inactivation.
引用
收藏
页码:623 / 635
页数:13
相关论文
共 68 条
[1]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[2]   Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating [J].
Baker, OS ;
Larsson, HP ;
Mannuzzu, LM ;
Isacoff, EY .
NEURON, 1998, 20 (06) :1283-1294
[3]   Pore accessibility during C-type inactivation in Shaker K+ channels [J].
Basso, C ;
Labarca, P ;
Stefani, E ;
Alvarez, O ;
Latorre, R .
FEBS LETTERS, 1998, 429 (03) :375-380
[4]   MODULATION OF K+ CURRENT BY FREQUENCY AND EXTERNAL [K+] - A TALE OF 2 INACTIVATION MECHANISMS [J].
BAUKROWITZ, T ;
YELLEN, G .
NEURON, 1995, 15 (04) :951-960
[5]   Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel [J].
Baukrowitz, T ;
Yellen, G .
SCIENCE, 1996, 271 (5249) :653-656
[6]  
Blaustein RO, 2000, NAT STRUCT BIOL, V7, P309
[7]   CYSTEINES IN THE SHAKER K+ CHANNEL ARE NOT ESSENTIAL FOR CHANNEL ACTIVITY OR ZINC MODULATION [J].
BOLAND, LM ;
JURMAN, ME ;
YELLEN, G .
BIOPHYSICAL JOURNAL, 1994, 66 (03) :694-699
[8]   Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy [J].
Cha, A ;
Snyder, GE ;
Selvin, PR ;
Bezanilla, F .
NATURE, 1999, 402 (6763) :809-813
[9]   Structural implications of fluorescence quenching in the Shaker K+ channel [J].
Cha, A ;
Bezanilla, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 112 (04) :391-408
[10]   Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence [J].
Cha, A ;
Bezanilla, F .
NEURON, 1997, 19 (05) :1127-1140