nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response

被引:81
作者
Veereshlingam, H
Haynes, JG
Penmetsa, RV
Cook, DR
Sherrier, DJ
Dickstein, R [1 ]
机构
[1] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA
[2] Univ Delaware, Delaware Biotechnol Inst, Newark, DE 19711 USA
[3] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA
关键词
D O I
10.1104/pp.104.049064
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses during symbiotic interactions.
引用
收藏
页码:3692 / 3702
页数:11
相关论文
共 50 条
[1]   RHIZOBIUM-MELILOTI LIPOOLIGOSACCHARIDE NODULATION FACTORS - DIFFERENT STRUCTURAL REQUIREMENTS FOR BACTERIAL ENTRY INTO TARGET ROOT HAIR-CELLS AND INDUCTION OF PLANT SYMBIOTIC DEVELOPMENTAL RESPONSES [J].
ARDOUREL, M ;
DEMONT, N ;
DEBELLE, FD ;
MAILLET, F ;
DEBILLY, F ;
PROME, JC ;
DENARIE, J ;
TRUCHET, G .
PLANT CELL, 1994, 6 (10) :1357-1374
[2]  
Barker D. G., 1990, Plant Molecular Biology Reporter, V8, P40, DOI 10.1007/BF02668879
[3]   NITROGEN-FIXATION (C2H2 REDUCTION) BY MEDICAGO NODULES AND BACTEROIDS UNDER SODIUM-CHLORIDE STRESS [J].
BEKKI, A ;
TRINCHANT, JC ;
RIGAUD, J .
PHYSIOLOGIA PLANTARUM, 1987, 71 (01) :61-67
[4]   TE7, AN INEFFICIENT SYMBIOTIC MUTANT OF MEDICAGO-TRUNCATULA GAERTN CV JEMALONG [J].
BENABEN, V ;
DUC, G ;
LEFEBVRE, V ;
HUGUET, T .
PLANT PHYSIOLOGY, 1995, 107 (01) :53-62
[5]  
BENABEN V, 1994, THESIS U P SABATIER
[6]  
BOIVIN C, 1990, PLANT CELL, V2, P1157, DOI 10.1105/tpc.2.12.1157
[7]  
Brewin N.J., 1998, RHIZOBIACEAE, P417
[8]   DEVELOPMENT OF THE LEGUME ROOT NODULE [J].
BREWIN, NJ .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :191-226
[9]  
Buchanan B.B., 2000, Biochemistry and Molecular Biology of Plants, P1102
[10]   Dissecting Arabidopsis lateral root development [J].
Casimiro, I ;
Beeckman, T ;
Graham, N ;
Bhalerao, R ;
Zhang, HM ;
Casero, P ;
Sandberg, G ;
Bennett, MJ .
TRENDS IN PLANT SCIENCE, 2003, 8 (04) :165-171