Estimation of land surface window (8-12 μm) emissivity from multispectral thermal infrared remote sensing -: A case study in a part of Sahara Desert -: art. no. 1067

被引:59
作者
Ogawa, K [1 ]
Schmugge, T
Jacob, F
French, A
机构
[1] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[2] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA
关键词
D O I
10.1029/2002GL016354
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
[1] Land surface window emissivity is an important parameter for estimating the longwave radiative budget. This study focuses on estimating the window (8-12 mum) emissivity from the waveband emissivities of the five thermal infrared channels of the Advanced Spaceborne Thermal Emission and Reflection Radiometer ( ASTER). ASTER data along with the Temperature-Emissivity Separation (TES) algorithm allows us to estimate surface channel emissivities with 90 m spatial resolution globally. Multiple regression was used to relate window emissivity to the five ASTER emissivities. This regression was developed using spectral libraries. Its residual error was less than 0.005 (RMSE) for values ranging between 0.81 and 1.00. We applied this regression to ASTER emissivities extracted from data acquired in 2001 and 2002 over a 240 x 1200 km area in a desert of North Africa. A comparison against a classification based emissivity map showed significant differences ranging between -0.08 and + 0.06.
引用
收藏
页码:39 / 1
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1991, Land Surface Evaporation
[2]  
Measurements and Paramrleizuliun, DOI DOI 10.1007/978-1-4612-3032-8_3
[3]   A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images [J].
Gillespie, A ;
Rokugawa, S ;
Matsunaga, T ;
Cothern, JS ;
Hook, S ;
Kahle, AB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1113-1126
[4]   Estimation of broadband land surface emissivity from multi-spectral thermal infrared remote sensing [J].
Ogawa, K ;
Schmugge, T ;
Jacob, F ;
French, A .
AGRONOMIE, 2002, 22 (06) :695-696
[5]  
PALLUCONI F, 1996, ATMOSPHERIC CORRECTI
[6]   REMOTE-SENSING OF SURFACE EMISSIVITY AT 9 MUM OVER GLOBE [J].
PRABHAKARA, C ;
DALU, G .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS AND ATMOSPHERES, 1976, 81 (21) :3719-3724
[7]   EMISSIVITY OF TERRESTRIAL MATERIALS IN THE 8-14 MU-M ATMOSPHERIC WINDOW [J].
SALISBURY, JW ;
DARIA, DM .
REMOTE SENSING OF ENVIRONMENT, 1992, 42 (02) :83-106
[8]   Thermal infrared (3-14 mu m) bidirectional reflectance measurements of sands and soils [J].
Snyder, WC ;
Wan, ZM ;
Zhang, YL ;
Feng, YZ .
REMOTE SENSING OF ENVIRONMENT, 1997, 60 (01) :101-109
[9]  
WILBER AC, 1999, NASATP1999209362, P30
[10]   The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment: 1. Experiment description and summary intercomparisons [J].
Wood, EF ;
Lettenmaier, DP ;
Liang, X ;
Lohmann, D ;
Boone, A ;
Chang, S ;
Chen, F ;
Dai, YJ ;
Dickinson, RE ;
Duan, QY ;
Ek, M ;
Gusev, YM ;
Habets, F ;
Irannejad, P ;
Koster, R ;
Mitchel, KE ;
Nasonova, ON ;
Noilhan, J ;
Schaake, J ;
Schlosser, A ;
Shao, YP ;
Shmakin, AB ;
Verseghy, D ;
Warrach, K ;
Wetzel, P ;
Xue, YK ;
Yang, ZL ;
Zeng, QC .
GLOBAL AND PLANETARY CHANGE, 1998, 19 (1-4) :115-135