Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae

被引:221
作者
Prinz, WA
Grzyb, L
Veenhuis, M
Kahana, JA
Silver, PA
Rapoport, TA
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[4] Univ Groningen, Lab Eukaryot Microbiol, GBB, NL-9750 AA Haren, Netherlands
关键词
SRP receptor; endoplasmic reticulum; cytoskeleton; mitochondria; yeast;
D O I
10.1083/jcb.150.3.461
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We find that the peripheral ER in Saccharomyces cerevisiae forms a dynamic network of interconnecting membrane tubules throughout the cell cycle, similar to the ER in higher eukaryotes. Maintenance of this network does not require microtubule or actin filaments, bur its dynamic behavior is largely dependent on the actin cytoskeleton, We isolated three conditional mutants that disrupt peripheral ER structure. One has a mutation in a component of the COPI coat complex, which is required for vesicle budding. This mutant has a partial defect in ER segregation into daughter cells and disorganized ER in mother cells. A similar phenotype was found in other mutants with defects in vesicular trafficking between ER and Golgi complex, but not in mutants blocked at later steps in the secretory pathway. The other two mutants found in the screen have defects in the signal recognition particle (SRP) receptor,This receptor, along with SRP, targets ribosome-nascent chain complexes to the ER membrane for protein translocation. A conditional mutation in SRP also disrupts ER structure, but other mutants with translocation defects do not. We also demonstrate that, both in wild-type and mutant cells, the ER and mitochondria partially coalign, and that mutations that disrupt ER structure also affect mitochondrial structure. Our data suggest that both trafficking between the ER and Golgi complex and ribosome targeting are important for maintaining ER structure, and that proper ER structure may be required to maintain mitochondrial structure.
引用
收藏
页码:461 / 474
页数:14
相关论文
共 61 条
[1]   Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact [J].
Achleitner, G ;
Gaigg, B ;
Krasser, A ;
Kainersdorfer, E ;
Kohlwein, SD ;
Perktold, A ;
Zellnig, G ;
Daum, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 264 (02) :545-553
[2]   SEGREGATION OF THE POLYPEPTIDE TRANSLOCATION APPARATUS TO REGIONS OF THE ENDOPLASMIC-RETICULUM CONTAINING RIBOPHORINS AND RIBOSOMES .1. FUNCTIONAL TESTS ON RAT-LIVER MICROSOMAL SUBFRACTIONS [J].
AMARCOSTESEC, A ;
TODD, JA ;
KREIBICH, G .
JOURNAL OF CELL BIOLOGY, 1984, 99 (06) :2247-2253
[3]   ISOLATION AND CHARACTERIZATION OF RAT1 - AN ESSENTIAL GENE OF SACCHAROMYCES-CEREVISIAE REQUIRED FOR THE EFFICIENT NUCLEOCYTOPLASMIC TRAFFICKING OF MESSENGER-RNA [J].
AMBERG, DC ;
GOLDSTEIN, AL ;
COLE, CN .
GENES & DEVELOPMENT, 1992, 6 (07) :1173-1189
[4]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[5]   Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway [J].
Biederer, T ;
Volkwein, C ;
Sommer, T .
EMBO JOURNAL, 1996, 15 (09) :2069-2076
[6]   MMM1 ENCODES A MITOCHONDRIAL OUTER-MEMBRANE PROTEIN ESSENTIAL FOR ESTABLISHING AND MAINTAINING THE STRUCTURE OF YEAST MITOCHONDRIA [J].
BURGESS, SM ;
DELANNOY, M ;
JENSEN, RE .
JOURNAL OF CELL BIOLOGY, 1994, 126 (06) :1375-1391
[7]   THE MICROTUBULE-DEPENDENT FORMATION OF A TUBULOVESICULAR NETWORK WITH CHARACTERISTICS OF THE ER FROM CULTURED-CELL EXTRACTS [J].
DABORA, SL ;
SHEETZ, MP .
CELL, 1988, 54 (01) :27-35
[8]   STRUCTURAL AND FUNCTIONAL DISSECTION OF SEC62P, A MEMBRANE-BOUND COMPONENT OF THE YEAST ENDOPLASMIC-RETICULUM PROTEIN IMPORT MACHINERY [J].
DESHAIES, RJ ;
SCHEKMAN, R .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (11) :6024-6035
[9]   In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction [J].
Dreier, L ;
Rapoport, TA .
JOURNAL OF CELL BIOLOGY, 2000, 148 (05) :883-898
[10]  
DUDEN R, 1994, J BIOL CHEM, V269, P24486