This paper deals with an analysis of the vector-controlled induction-motor (IM) drive with a novel model reference adaptive system (MRAS)-type rotor speed estimator. A stability-analysis method of this novel MRAS estimator is shown. The influence of equivalent-circuit parameter changes of the IM on the pole placement of the estimator transfer function and the stability of the whole drive system are analyzed and tested. The influence of the adaptation-algorithm coefficients of the MRAS-estimator scheme is also tested. The allowable range of motor-parameter changes is determined, which guarantees the stable operation of the sensorless field-oriented IM drive with this speed and flux estimator. Dynamical performances of the vector-control system with the current-type MRAS estimator are tested in a laboratory setup.