Structured language modeling

被引:132
作者
Chelba, C
Jelinek, F
机构
[1] Johns Hopkins Univ, Ctr Language & Speech Proc, Baltimore, MD USA
[2] Johns Hopkins Univ, Ctr Language & Speech Proc, Baltimore, MD USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/csla.2000.0147
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an attempt at using the syntactic structure in natural language for improved language models for speech recognition. The structured language model merges techniques in automatic parsing and language modeling using an original probabilistic parameterization of a shift-reduce parser. A maximum likelihood re-estimation procedure belongings to the class of expectation-maximization algorithms is employed for training the model. Experiments on the Wall Street Journal and Switchboard corpora show improvement in both perplexity and word error rate-word lattice rescoring-over the standard 3-gram language model. (C) 2000 Academic Press.
引用
收藏
页码:283 / 332
页数:50
相关论文
共 30 条
[1]  
ABNEY S, 1999, P ACL COLL PARK MD U, V1, P541
[2]  
[Anonymous], IEEE INT C AC SPEECH
[3]  
Bellegarda J.-R., 1997, P 5 EUR C SPEECH COM, P1451
[4]  
Berger AL, 1996, COMPUT LINGUIST, V22, P39
[5]  
Brown PF., 1997, COMPUT LINGUIST, V18, P467
[6]  
BYRNE W, 1998, 17 CLSP J HOPK U DEP
[7]  
Charniak E., 1997, Proc. of the National Conference on Artificial Intelligence, P598
[8]  
Chelba, 1998, P 36 ANN M ASS COMP, V1, P225
[9]  
CHELBA C, 1997, P 5 EUR C SPEECH COM, V5, P2775
[10]  
CHELBA C, 1997, P ACL EACL MADR SPAI, P498