KANADI and class IIIHD-zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis

被引:189
作者
Izhaki, Anat
Bowman, John L. [1 ]
机构
[1] Univ Calif Davis, Plant Biol Sect, Davis, CA 95616 USA
[2] Monash Univ, Sch Biol Sci, Melbourne, Vic 38700, Australia
关键词
D O I
10.1105/tpc.106.047472
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Embryo patterning in Arabidopsis thaliana is highly affected when KANADI or Class III HD-Zip genes are compromised. Triple loss-of-function kan1 kan2 kan4 embryos exhibit striking defects in the peripheral-central axis, developing lateral leaf-like organs from the hypocotyls, whereas loss of Class III HD-Zip gene activity results in a loss of bilateral symmetry. Loss of KANADI activity in a Class III HD-Zip mutant background mitigates the defects in bilateral symmetry, implying that the two gene families act antagonistically during embryonic pattern formation. Dynamic patterns of auxin concentration and flux contribute to embryo patterning. Polar cellular distribution of PIN-FORMED1 (PIN1) mediates auxin flow throughout embryogenesis and is required for establishment of the apical-basal axis and bilateral symmetry. Defects in the pattern of PIN1 expression are evident when members of either the KANADI or Class III HD- Zip gene families are compromised. Abnormal expression patterns of PIN1 in KANADI or Class III HD- Zip multiple mutants and the phenotype of plants in which members of both gene families are mutated suggest that pattern formation along the central-peripheral axis results from interplay between auxin and the KANADI and Class III HD-Zip transcription factors, whose defined spatial and temporal expression patterns may also be influenced by auxin.
引用
收藏
页码:495 / 508
页数:14
相关论文
共 56 条
[1]   Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism [J].
Abas, L ;
Benjamins, R ;
Malenica, N ;
Paciorek, T ;
Wirniewska, J ;
Moulinier-Anzola, JC ;
Sieberer, T ;
Friml, J ;
Luschnig, C .
NATURE CELL BIOLOGY, 2006, 8 (03) :249-256
[2]  
Baima S, 1995, DEVELOPMENT, V121, P4171
[3]  
BARTON MK, 1993, DEVELOPMENT, V119, P823
[4]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[5]   Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning [J].
Berger, F ;
Linstead, P ;
Dolan, L ;
Haseloff, J .
DEVELOPMENTAL BIOLOGY, 1998, 194 (02) :226-234
[6]  
BERLETH T, 1993, DEVELOPMENT, V118, P575
[7]   The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots [J].
Blilou, I ;
Xu, J ;
Wildwater, M ;
Willemsen, V ;
Paponov, I ;
Friml, J ;
Heidstra, R ;
Aida, M ;
Palme, K ;
Scheres, B .
NATURE, 2005, 433 (7021) :39-44
[8]   Vascular differentiation and transition in the seedling of Arabidopsis thaliana (Brassicaceae) [J].
Busse, JS ;
Evert, RF .
INTERNATIONAL JOURNAL OF PLANT SCIENCES, 1999, 160 (02) :241-251
[9]   Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis [J].
Cheng, Youfa ;
Dai, Xinhua ;
Zhao, Yunde .
GENES & DEVELOPMENT, 2006, 20 (13) :1790-1799
[10]   Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis [J].
de Reuille, PB ;
Bohn-Courseau, I ;
Ljung, K ;
Morin, H ;
Carraro, N ;
Godin, C ;
Traas, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (05) :1627-1632