Entanglement entropy of random quantum critical points in one dimension

被引:300
作者
Refael, G [1 ]
Moore, JE
机构
[1] Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.260602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory. We show that for a class of strongly random quantum spin chains, the same logarithmic scaling holds for mean entanglement at criticality and defines a critical entropy equivalent to central charge in the pure case. This effective central charge is obtained for Heisenberg, XX, and quantum Ising chains using an analytic real-space renormalization-group approach believed to be asymptotically exact. For these random chains, the effective universal central charge is characteristic of a universality class and is consistent with a c-theorem.
引用
收藏
页数:4
相关论文
共 16 条
[1]   EXACT CONFORMAL-FIELD-THEORY RESULTS ON THE MULTICHANNEL KONDO EFFECT - SINGLE-FERMION GREEN-FUNCTION, SELF-ENERGY, AND RESISTIVITY [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW B, 1993, 48 (10) :7297-7321
[2]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[3]   LOW-TEMPERATURE PROPERTIES OF THE RANDOM HEISENBERG ANTI-FERROMAGNETIC CHAIN [J].
DASGUPTA, C ;
MA, S .
PHYSICAL REVIEW B, 1980, 22 (03) :1305-1319
[4]   RANDOM ANTIFERROMAGNETIC QUANTUM SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW B, 1994, 50 (06) :3799-3821
[5]   CRITICAL-BEHAVIOR OF RANDOM TRANSVERSE-FIELD ISING SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW B, 1995, 51 (10) :6411-6461
[6]   Distributions of gaps and end-to-end correlations in random transverse-field Ising spin chains [J].
Fisher, DS ;
Young, AP .
PHYSICAL REVIEW B, 1998, 58 (14) :9131-9141
[7]   GEOMETRIC AND RENORMALIZED ENTROPY IN CONFORMAL FIELD-THEORY [J].
HOLZHEY, C ;
LARSEN, F ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1994, 424 (03) :443-467
[8]   Random walkers in one-dimensional random environments: Exact renormalization group analysis [J].
Le Doussal, P ;
Monthus, C ;
Fisher, DS .
PHYSICAL REVIEW E, 1999, 59 (05) :4795-4840
[9]   RANDOM ANTI-FERROMAGNETIC CHAIN [J].
MA, SK ;
DASGUPTA, C ;
HU, CK .
PHYSICAL REVIEW LETTERS, 1979, 43 (19) :1434-1437
[10]  
Osborne TJ, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.032110