Histograms selection with an Akaike type criterion

被引:18
作者
Castellan, G [1 ]
机构
[1] Univ Paris Sud, Math Lab, F-91405 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 08期
关键词
D O I
10.1016/S0764-4442(00)00250-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the problem of choosing a histogram estimator from a sample of some unknown density. We consider regular as well as irregular partitions and propose a penalized maximum likelihood selection criterion. We define the penalty term involved in our criterion in order to minimize non asymptotically the Hellinger risk for the resulting penalized estimator. Our criterion appears either as a mild correction or as a substantial modification of Akaike's criterion, depending on the complexity of the collection of partitions to be considered (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:729 / 732
页数:4
相关论文
共 7 条
[1]  
Akaike H, 1973, 2 INT S INFORM THEOR, P199, DOI [10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0]
[2]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[3]   Minimum contrast estimators on sieves: exponential bounds and rates of convergence [J].
Birge, L ;
Massart, P .
BERNOULLI, 1998, 4 (03) :329-375
[4]  
BIRGE L, 1999, MANY BINS PUT REGULA
[5]  
CASTELLAN G, 1999, 9961 U PAR SUD
[6]  
MASSART P, 2000, IN PRESS ANN PROBAB
[7]   New concentration inequalities in product spaces [J].
Talagrand, M .
INVENTIONES MATHEMATICAE, 1996, 126 (03) :505-563