Resonance phenomena of a solitonlike extended object in a bistable potential

被引:49
作者
Gonzalez, JA [1 ]
Mello, BA [1 ]
Reyes, LI [1 ]
Guerrero, LE [1 ]
机构
[1] Inst Venezolano Invest Cient, Ctr Fis, Caracas 1020A, Venezuela
关键词
D O I
10.1103/PhysRevLett.80.1361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the dynamics of a soliton that behaves as an extended particle. The soliton motion in an effective bistable potential can be chaotic in a similar way as the Duffing oscillator. We generalize the concept of geometrical resonance to spatiotemporal systems and apply it to design a nonfeedback mechanism of chaos control using localized perturbations. We show the existence of solitonic stochastic resonance.
引用
收藏
页码:1361 / 1364
页数:4
相关论文
共 29 条
[1]  
ARNOLD VI, 1989, GEOMETRICAL METHODS
[2]   CONTROLLING CHAOS IN HIGH DIMENSIONAL SYSTEMS [J].
AUERBACH, D ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1992, 69 (24) :3479-3482
[3]   THE MECHANISM OF STOCHASTIC RESONANCE [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :L453-L457
[4]  
Bishop A. R., 1980, Physica D, V1D, P1, DOI 10.1016/0167-2789(80)90003-2
[5]   TAMING CHAOTIC DYNAMICS WITH WEAK PERIODIC PERTURBATIONS [J].
BRAIMAN, Y ;
GOLDHIRSCH, I .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2545-2548
[6]   Tuning in to noise [J].
Bulsara, AR ;
Gammaitoni, L .
PHYSICS TODAY, 1996, 49 (03) :39-45
[7]   Geometrical resonance as a chaos eliminating mechanism [J].
Chacon, R .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :482-485
[8]   ON THE ANALYSIS OF SPATIOTEMPORALLY CHAOTIC DATA [J].
CHATE, H .
PHYSICA D, 1995, 86 (1-2) :238-247
[9]   TECHNIQUES FOR THE CONTROL OF CHAOS [J].
DITTO, WL ;
SPANO, ML ;
LINDNER, JF .
PHYSICA D, 1995, 86 (1-2) :198-211
[10]   SOLITARY WAVES IN ONE-DIMENSIONAL DAMPED SYSTEMS [J].
GONZALEZ, JA ;
HOLYST, JA .
PHYSICAL REVIEW B, 1987, 35 (07) :3643-3646