Adaptation of a quantitative trait to a moving optimum

被引:53
作者
Kopp, Michael [1 ]
Hermisson, Joachim [1 ]
机构
[1] Univ Munich, Dept Biol 2, Sect Evolutionary Biol, Biozentrum, D-82152 Planegg Martinsried, Germany
关键词
D O I
10.1534/genetics.106.067215
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We investigate adaptive evolution of a quantitative trait tinder stabilizing selection with a moving optimum. We characterize three regimes, depending on whether (1) the beneficial mutation rate, (2) the fixation time, or (3) the rate of environmental change is the limiting factor for adaptation. If the environment is rate limiting, mutations with a small phenotypic effect are prefered over large mutations, in contrast to standard theory.
引用
收藏
页码:715 / 719
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 2009, GNU SCI LIB REFERENC, Patent No. 552301619
[2]   Near-periodic substitution and the genetic variance induced by environmental change [J].
Bello, Y ;
Waxman, D .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 239 (02) :152-160
[3]  
Burger R., 2000, The Mathematical Theory of Selection, Recombination, and Mutation
[4]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[5]  
Eaton J.W., 1997, GNU OCTAVE MANUAL
[6]   A SIMPLE STOCHASTIC GENE SUBSTITUTION MODEL [J].
GILLESPIE, JH .
THEORETICAL POPULATION BIOLOGY, 1983, 23 (02) :202-215
[7]  
GILLESPIE JH, 1993, GENETICS, V134, P971
[8]   A mathematical theory of natural and artificial selection, Part V: Selection and mutation. [J].
Haldane, JBS .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1927, 23 :838-844
[9]   Soft sweeps: Molecular population genetics of adaptation from standing genetic variation [J].
Hermisson, J ;
Pennings, PS .
GENETICS, 2005, 169 (04) :2335-2352
[10]   Adaptation in sexuals vs. asexuals:: Clonal interference and the Fisher-Muller model [J].
Kim, Y ;
Orr, HA .
GENETICS, 2005, 171 (03) :1377-1386