Formation of a bis(histidyl) heme iron complex in manganese peroxidase at high pH and restoration of the native enzyme structure by calcium

被引:18
作者
Youngs, HL [1 ]
Moënne-Loccoz, P [1 ]
Loehr, TM [1 ]
Gold, MH [1 ]
机构
[1] Oregon Grad Inst Sci & Technol, Dept Biochem & Mol Biol, Beaverton, OR 97006 USA
关键词
D O I
10.1021/bi000679j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at similar to 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the formation of a bis(histidyl) heme iron complex in both proteins at high pH. The resonance Raman (RR) spectra of both ferric proteins at high pH are similar, indicating similar heme environments in both proteins, and resemble that of ferric cytochrome b(558), a protein that contains a bis-His iron complex. Upon reduction with dithionite at high pH, the visible spectra of both the wild-type and F190I MnP exhibit absorption maxima at 429, 529, and 558 MI, resembling the absorption spectrum of ferrous cytochrome b(558). RR spectra of the reduced wild-type and F190I mutant proteins at high pH are also similar to the RR spectrum of ferrous cytochrome b(558), further suggesting that the alkaline low-spin species is a bis(histidyl) heme derivative. No shift in the low-frequency RR bands was observed in 75% O-18-labeled water, indicating that the low-spin species is most likely not a hydroxo-heme derivative. Electronic and RR spectra also indicate that addition of Ca2+ to either the ferric or ferrous enzymes at high pH completely restores the high-spin pentacoordinate species. Other divalent metals, such as Mn2+, Mg2+, Zn2+, or Cd2+, do not restore the enzyme under the conditions studied.
引用
收藏
页码:9994 / 10000
页数:7
相关论文
共 60 条
[1]   Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium [J].
Alic, M ;
Akileswaran, L ;
Gold, MH .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1997, 1338 (01) :1-7
[2]   Spectroscopic characterization of active mutants of manganese peroxidase: Mutations on the proximal side affect calcium binding of the distal side [J].
Banci, L ;
Bertini, I ;
Capannoli, C ;
Del Conte, R ;
Tien, M .
BIOCHEMISTRY, 1999, 38 (30) :9617-9625
[3]   H-1-NMR INVESTIGATION OF MANGANESE PEROXIDASE FROM PHANEROCHAETE-CHRYSOSPORIUM - A COMPARISON WITH OTHER PEROXIDASES [J].
BANCI, L ;
BERTINI, I ;
PEASE, EA ;
TIEN, M ;
TURANO, P .
BIOCHEMISTRY, 1992, 31 (41) :10009-10017
[4]   OXIDATIVE-DEGRADATION OF NONPHENOLIC LIGNIN DURING LIPID-PEROXIDATION BY FUNGAL MANGANESE PEROXIDASE [J].
BAO, WL ;
FUKUSHIMA, Y ;
JENSEN, KA ;
MOEN, MA ;
HAMMEL, KE .
FEBS LETTERS, 1994, 354 (03) :297-300
[5]   STRUCTURAL CORRELATIONS AND VINYL INFLUENCES IN RESONANCE RAMAN-SPECTRA OF PROTOHEME COMPLEXES AND PROTEINS [J].
CHOI, S ;
SPIRO, TG ;
LANGRY, KC ;
SMITH, KM ;
BUDD, DL ;
LAMAR, GN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (16) :4345-4351
[6]   OUT-OF-PLANE DEFORMATION MODES IN THE RESONANCE RAMAN-SPECTRA OF METALLOPORPHYRINS AND HEME-PROTEINS [J].
CHOI, SH ;
SPIRO, TG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1983, 105 (11) :3683-3692
[7]   CATALYTIC SITES OF HEMOPROTEIN PEROXIDASES [J].
DEMONTELLANO, PRO .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1992, 32 :89-107
[8]  
Dunford H.B., 1999, HEME PEROXIDASES
[9]   FUNCTION AND MECHANISM OF ACTION OF PEROXIDASES [J].
DUNFORD, HB ;
STILLMAN, JS .
COORDINATION CHEMISTRY REVIEWS, 1976, 19 (03) :187-251
[10]   CRYSTAL-STRUCTURE OF LIGNIN PEROXIDASE [J].
EDWARDS, SL ;
RAAG, R ;
WARIISHI, H ;
GOLD, MH ;
POULOS, TL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :750-754