Critical phenomena in nonlinear sigma models

被引:13
作者
Liebling, SL [1 ]
Hirschmann, EW
Isenberg, J
机构
[1] Long Isl Univ, Southampton Coll, Theoret & Computat Studies Grp, Southampton, NY 11968 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
D O I
10.1063/1.533432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider solutions to the nonlinear sigma model (wave maps) with target space S-3 and base space 3+1 Minkowski space, and we find critical behavior separating singular solutions from nonsingular solutions. For families of solutions with localized spatial support a self-similar solution is found at the boundary. For other families, we find that a static solution appears to sit at the boundary. This behavior is compared to the black hole critical phenomena found by Choptuik. (C) 2000 American Institute of Physics. [S0022-2488(00)04908-2].
引用
收藏
页码:5691 / 5700
页数:10
相关论文
共 16 条
[1]   ON SELF-SIMILAR GLOBAL TEXTURES IN AN EXPANDING UNIVERSE [J].
AMINNEBORG, S ;
BERGSTROM, L .
PHYSICS LETTERS B, 1995, 362 (1-4) :39-45
[2]  
BIZON P, MATHPH9910026
[3]   UNIVERSALITY AND SCALING IN GRAVITATIONAL COLLAPSE OF A MASSLESS SCALAR FIELD [J].
CHOPTUIK, MW .
PHYSICAL REVIEW LETTERS, 1993, 70 (01) :9-12
[4]   Instability of an ''approximate black hole'' [J].
Choptuik, MW ;
Hirschmann, EW ;
Liebling, SL .
PHYSICAL REVIEW D, 1997, 55 (10) :6014-6018
[5]  
CHOPTUIK MW, GRQC9803075
[6]  
CHOQUETBRUHAT Y, 1987, I H POINCARE PHYS TH, V46, P97
[7]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[8]  
GU CH, 1980, COMMUN PUR APPL MATH, V33, P727
[9]  
GUNDLACH C, 1997, ADV THEOR MATH PHYS, V2, P1
[10]   Are there static textures? [J].
Lichtensteiger, L ;
Durrer, R .
PHYSICAL REVIEW D, 1999, 59 (12) :1-6