Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development

被引:158
作者
Brody, T [1 ]
Odenwald, WF [1 ]
机构
[1] NINDS, Neurogenet Unit, Neurochem Lab, NIH, Bethesda, MD 20892 USA
关键词
Drosophila; CNS; neuroblast lineage; sublineages; cell culture; transcription factor network;
D O I
10.1006/dbio.2000.9829
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
During Drosophila embryonic CNS development, the sequential neuroblast (NB) expression of four proteins, Hunchback (Hb), Pou-homeodomain proteins 1 and 2 (referred to collectively as Pdm), and Castor (Cas), identifies a transcription factor network regulating the temporal development of all ganglia. The Zn-finger proteins Hb and Gas, acting as repressors, confine Pdm expression to a narrow intermediate temporal window; this results in the generation of three panneural domains whose cellular constituents are marked by expression of Hb, Pdm, or Cas (R. Kambadur et al., 1998, Genes DeV. 12, 246-260). Seeking to identify the cellular mechanisms that generate these expression compartments, we studied the lineage development of isolated NBs in culture. We found that the Db, Pdm, and Cas expression domains are generated by transitions in NE gene expression that are followed by gene product perdurance within sequentially produced sublineages. Our results also indicate that following Cas expression, many CNS NBs continue their asymmetric divisions generating additional progeny, which can be identified by the expression of the bHLH transcription factor Grainyhead (Gh). Gh appears to be a terminal embryonic CNS lineage marker. Taken together, these studies indicate that once NBs initiate Lineage development, no additional signaling between NBs and the neuroectoderm and/or mesoderm is required to trigger the temporal progression of Hb --> Pdm --> Cas --> Gh expression during NB outgrowth.
引用
收藏
页码:34 / 44
页数:11
相关论文
共 52 条