MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes

被引:54
作者
Han, Zhao Jun [1 ]
Seo, Dong Han [1 ,2 ]
Yick, Samuel [1 ,2 ]
Chen, Jun Hong [3 ]
Ostrikov, Kostya [1 ,2 ,4 ]
机构
[1] CSIRO Mfg Flagship, Ind Innovat Program, Lindfield, NSW 2070, Australia
[2] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[3] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53201 USA
[4] Queensland Univ Technol, Inst Future Environm, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会;
关键词
ENERGY; HYBRID; MNO2; COMPOSITES; MECHANISM; CAPACITY; STORAGE;
D O I
10.1038/am.2014.100
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanohybrids consisting of both carbon and pseudocapacitive metal oxides are promising as high-performance electrodes to meet the key energy and power requirements of supercapacitors. However, the development of high-performance nanohybrids with controllable size, density, composition and morphology remains a formidable challenge. Here, we present a simple and robust approach to integrating manganese oxide (MnOx) nanoparticles onto flexible graphite paper using an ultrathin carbon nanotube/reduced graphene oxide (CNT/RGO) supporting layer. Supercapacitor electrodes employing the MnOx/CNT/RGO nanohybrids without any conductive additives or binders yield a specific capacitance of 1070 F g(-1) at 10 mV s(-1), which is among the highest values reported for a range of hybrid structures and is close to the theoretical capacity of MnOx. Moreover, atmosphericpressure plasmas are used to functionalize the CNT/RGO supporting layer to improve the adhesion of MnOx nanoparticles, which results in theimproved cycling stability of the nanohybrid electrodes. These results provide information for the utilization of nanohybrids and plasma-related effects to synergistically enhance the performance of supercapacitors and may create new opportunities in areas such as catalysts, photosynthesis and electrochemical sensors.
引用
收藏
页码:e140 / e140
页数:8
相关论文
共 38 条
[1]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[2]   Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism [J].
Chigane, M ;
Ishikawa, M ;
Izaki, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :D96-D101
[3]   Dense and long carbon nanotube arrays decorated with Mn3O4 nanoparticles for electrodes of electrochemical supercapacitors [J].
Cui, Xinwei ;
Hu, Fengping ;
Wei, Weifeng ;
Chen, Weixing .
CARBON, 2011, 49 (04) :1225-1234
[4]   Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode [J].
Dong, Xiaochen ;
Wang, Xuewan ;
Wang, Ling ;
Song, Hao ;
Li, Xingao ;
Wang, Lianhui ;
Chan-Park, Mary B. ;
Li, Chang Ming ;
Chen, Peng .
CARBON, 2012, 50 (13) :4865-4870
[5]   Self-Limiting Electrodeposition of Hierarchical MnO2 and M(OH)2/MnO2 Nanofibril/Nanowires: Mechanism and Supercapacitor Properties [J].
Duay, Jonathon ;
Sherrill, Stefanie A. ;
Gui, Zhe ;
Gillette, Eleanor ;
Lee, Sang Bok .
ACS NANO, 2013, 7 (02) :1200-1214
[6]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[7]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[8]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[9]   Diameter-controlled synthesis of α-Mn2O3 nanorods and nanowires with enhanced surface morphology and optical properties [J].
Javed, Q. ;
Wang, F. P. ;
Rafique, M. Y. ;
Toufiq, A. M. ;
Li, Q. S. ;
Mahmood, H. ;
Khan, W. .
NANOTECHNOLOGY, 2012, 23 (41)
[10]   Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances [J].
Jiang, Hao ;
Zhao, Ting ;
Yan, Chaoyi ;
Ma, Jan ;
Li, Chunzhong .
NANOSCALE, 2010, 2 (10) :2195-2198