An evolutionarily conserved mechanism for sensitization of soluble guanylyl cyclase. reveals extensive nitric oxide-mediated upregulation of cyclic GMP in insect brain

被引:17
作者
Ott, SR [1 ]
Delago, A [1 ]
Elphick, MR [1 ]
机构
[1] Univ London Queen Mary Coll, Sch Biol Sci, London E1 4NS, England
关键词
antennal lobe; cockroach; locust; mushroom body; YC-1;
D O I
10.1111/j.1460-9568.2004.03588.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Soluble guanylyl cyclase (SGC) is the main receptor for the gaseous signalling molecule nitric oxide (NO) in vertebrates and invertebrates. Recently, a novel class of drugs that regulate mammalian SGC by NO-independent allosteric mechanisms has been identified [e.g. 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole, YC-1]. To assess the evolutionary conservation and hence the potential physiological relevance of these mechanisms, we have tested YC-1 on the brains of two model insects, the cockroach Periplaneta americana and the locust Schistocerca gregaria. YC-1 strongly potentiated the NO-induced elevation of total cyclic 3',5'-guanosine monophosphate (cGMP) and amplified the intensity and consistency of NO-induced cGMP-immunoreactivity in the brain. Our data indicate that the effect of YC-1 was independent of phosphodiesterase inhibition and thus mediated by direct sensitization of SGC. Immunohistopharmacology and co-labelling with antibodies against the SGC alpha-subunit confirmed that cGMP induced by co-application of NO and YC-1 is predominantly attributable to SGC. The staggering number of NO-responsive neurons revealed by YC-1 suggests that previous studies may have considerably underestimated the number of cellular targets for NO in the insect brain. Moreover, a subset of these targets exhibited cGMP-immunoreactivity without application of exogenous NO, demonstrating that YC-1 can be exploited for visualization of physiological cGMP signals in response to endogenous NO production. In conclusion, our discovery that YC-1 is a potent sensitizer of insect SGC indicates that a NO-independent regulatory site is an evolutionarily conserved feature of SGC. Our findings add considerable momentum to the concept of an as yet unidentified endogenous ligand that regulates the gain of the NO-cGMP signalling pathway.
引用
收藏
页码:1231 / 1244
页数:14
相关论文
共 65 条
[1]   Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains [J].
Anantharaman, V ;
Koonin, EV ;
Aravind, L .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (05) :1271-1292
[2]   Atypical neural messengers [J].
Barañano, DE ;
Ferris, CD ;
Snyder, SH .
TRENDS IN NEUROSCIENCES, 2001, 24 (02) :99-106
[3]  
Becker E M, 2001, BMC Pharmacol, V1, P13, DOI 10.1186/1471-2210-1-13
[4]   Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses [J].
Bellamy, TC ;
Wood, J ;
Goodwin, DA ;
Garthwaite, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2928-2933
[5]   Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations [J].
Bellamy, TC ;
Griffiths, C ;
Garthwaite, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (35) :31801-31807
[6]   Pharmacology of the nitric oxide receptor, soluble guanylyl cyclase, in cerebellar cells [J].
Bellamy, TC ;
Garthwaite, J .
BRITISH JOURNAL OF PHARMACOLOGY, 2002, 136 (01) :95-103
[7]   The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells [J].
Bellamy, TC ;
Garthwaite, J .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2002, 230 (1-2) :165-176
[8]   The nitric oxide cyclic GMP messenger system in olfactory pathways of the locust brain [J].
Bicker, G ;
Schmachtenberg, O ;
DeVente, J .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1996, 8 (12) :2635-2643
[9]   Sources and targets of nitric oxide signalling in insect nervous systems [J].
Bicker, G .
CELL AND TISSUE RESEARCH, 2001, 303 (02) :137-146
[10]   NADPH-DIAPHORASE EXPRESSION IN NEURONS AND GLIAL-CELLS OF THE LOCUST BRAIN [J].
BICKER, G ;
HAHNLEIN, I .
NEUROREPORT, 1995, 6 (02) :325-328