The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase

被引:100
作者
Kaplan, DL [1 ]
机构
[1] Yale Univ, Dept Mol Biophys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Biochem, New Haven, CT 06520 USA
关键词
DNA replication fork; helicase mechanism; unwinding assay; nicked DNA; modified DNA;
D O I
10.1006/jmbi.2000.3965
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DnaB helicase is a ring-shaped hexamer that unwinds DNA at a replication fork. To understand how this protein interacts with DNA during unwinding, DnaB from Thermus aquaticus was incubated with chemically modified forked-duplex DNA substrates and the unwinding rates were measured. Unwinding was inhibited by modifications made to the 5'-tail, but not the 5'-tail, suggesting that the helicase interacts with the 5'-tail but not the 5'-tail during unwinding. Using oligonucleotides of mixed polarity, it was confirmed that DnaB translocates in the 5' to 3' direction as it unwinds DNA. A substrate was synthesized that contained two duplexes in tandem. Experiments involving various modifications of this tandem duplex demonstrated that when the 3'-tail is short, two stands of DNA pass through the central channel of DnaB with no resultant unwinding. Thus, the role of the 3'-tail in stimulating unwinding has been elucidated. The 3'-tail does not bind to DnaB during unwinding, but sterically determines whether one or two DNA strands pass through the central channel of DnaB. Furthermore, a new substrate for DnaB locomotion has been discovered. DnaB may actively translocate in the 5' to 3' direction along single-stranded DNA, even when a complementary strand is also present within the protein's central channel. This new mode of action may regulate DnaB activity by inhibiting unwinding at regions of DNA that are not forked. Furthermore, this new function for DnaB may coordinate abortion of leading and lagging strand replication if a nick is encountered on the leading strand. (C) 2000 Academic Press.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 39 条
[1]   Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate [J].
Ahnert, P ;
Patel, SS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32267-32273
[2]   GENERAL PRIMING SYSTEM EMPLOYING ONLY DNAB PROTEIN AND PRIMASE FOR DNA-REPLICATION [J].
ARAI, K ;
KORNBERG, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (09) :4308-4312
[3]  
BAKER TA, 1987, J BIOL CHEM, V262, P6877
[4]   THE PHAGE T4-CODED DNA-REPLICATION HELICASE (GP41) FORMS A HEXAMER UPON ACTIVATION BY NUCLEOSIDE TRIPHOSPHATE [J].
DONG, F ;
GOGOL, EP ;
VONHIPPEL, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (13) :7462-7473
[5]   BACTERIOPHAGE-T7 HELICASE-PRIMASE PROTEINS FORM RINGS AROUND SINGLE-STRANDED-DNA THAT SUGGEST A GENERAL STRUCTURE FOR HEXAMERIC HELICASES [J].
EGELMAN, EH ;
YU, X ;
WILD, R ;
HINGORANI, MM ;
PATEL, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (09) :3869-3873
[6]   Crystal structure of the N-terminal domain of the DnaB hexameric helicase [J].
Fass, D ;
Bogden, CE ;
Berger, JM .
STRUCTURE, 1999, 7 (06) :691-698
[7]   HELICASES - AMINO-ACID-SEQUENCE COMPARISONS AND STRUCTURE-FUNCTION-RELATIONSHIPS [J].
GORBALENYA, AE ;
KOONIN, EV .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (03) :419-429
[8]   A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding [J].
Hacker, KJ ;
Johnson, KA .
BIOCHEMISTRY, 1997, 36 (46) :14080-14087
[9]   CRYSTAL-STRUCTURE OF CORE STREPTAVIDIN DETERMINED FROM MULTIWAVELENGTH ANOMALOUS DIFFRACTION OF SYNCHROTRON RADIATION [J].
HENDRICKSON, WA ;
PAHLER, A ;
SMITH, JL ;
SATOW, Y ;
MERRITT, EA ;
PHIZACKERLEY, RP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (07) :2190-2194
[10]   Strand specificity in the interactions of Escherichia coli primary replicative helicase DnaB protein with a replication fork [J].
Jezewska, MJ ;
Rajendran, S ;
Bujalowski, W .
BIOCHEMISTRY, 1997, 36 (33) :10320-10326