Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins:: effects of biological aging

被引:171
作者
Kanski, J
Behring, A
Pelling, J
Schöneich, C
机构
[1] Univ Kansas, Dept Pharmaceut Chem, Lawrence, KS 66047 USA
[2] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, Kansas City, KS 66103 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2005年 / 288卷 / 01期
关键词
heart; mitochondria;
D O I
10.1152/ajpheart.01030.2003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Proteomic techniques were used to identify cardiac proteins from whole heart homogenate and heart mitochondria of Fisher 344/Brown Norway F1 rats, which suffer protein nitration as a consequence of biological aging. Soluble proteins from young (5 mo old) and old (26 mo old) animals were separated by one- and two-dimensional gel electrophoresis. One- and two-dimensional Western blots with an anti-nitrotyrosine antibody show an age-related increase in the immunoresponse of a few specific proteins, which were identified by nanoelectrospray ionization-tandem mass spectrometry (NSI-MS/MS). Complementary proteins were immunoprecipitated with an immobilized anti-nitrotyrosine antibody followed by NSI-MS/MS analysis. A total of 48 proteins were putatively identified. Among the identified proteins were alpha-enolase, alpha-aldolase, desmin, aconitate hydratase, methylmalonate semialdehyde dehydrogenase, 3-ketoacyl-CoA thiolase, acetyl-CoA acetyltransferase, GAPDH, malate dehydrogenase, creatine kinase, electron-transfer flavoprotein, manganese-superoxide dismutase, F1-ATPase, and the voltage-dependent anion channel. Some contaminating blood proteins including transferrin and fibrinogen beta-chain precursor showed increased levels of nitration as well. MS/MS analysis located nitration at Y105 of the electron-transfer flavoprotein. Among the identified proteins, there are important enzymes responsible for energy production and metabolism as well as proteins involved in the structural integrity of the cells. Our results are consistent with age-dependent increased oxidative stress and with free radical-dependent damage of proteins. Possibly the oxidative modifications of the identified proteins contribute to the age-dependent degeneration and functional decline of heart proteins.
引用
收藏
页码:H371 / H381
页数:11
相关论文
共 71 条
[1]   Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca2+-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation [J].
Adachi, T ;
Matsui, R ;
Xu, SQ ;
Kirber, M ;
Lazar, HL ;
Sharov, VS ;
Schöneich, C ;
Cohen, RA .
CIRCULATION RESEARCH, 2002, 90 (10) :1114-1121
[2]   Proteomic method identifies proteins nitrated in vivo during inflammatory challenge [J].
Aulak, KS ;
Miyagi, M ;
Yan, L ;
West, KA ;
Massillon, D ;
Crabb, JW ;
Stuehr, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12056-12061
[3]   Dynamics of protein nitration in cells and mitochondria [J].
Aulak, KS ;
Koeck, T ;
Crabb, JW ;
Stuehr, DJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2004, 286 (01) :H30-H38
[4]  
Aulak Kulwant S., 2004, V279, P151
[5]   CONTROL OF CARDIAC-MUSCLE CELL-FUNCTION BY AN ENDOGENOUS NITRIC-OXIDE SIGNALING SYSTEM [J].
BALLIGAND, JL ;
KELLY, RA ;
MARSDEN, PA ;
SMITH, TW ;
MICHEL, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (01) :347-351
[6]   Oxidatively modified proteins in aging and disease [J].
Beal, MF .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (09) :797-803
[7]   Oxidative damage and tyrosine nitration from peroxynitrite [J].
Beckman, JS .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (05) :836-844
[8]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[9]  
Cabiscol E, 2000, J BIOL CHEM, V275, P27393
[10]   Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain.: Part II:: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71 [J].
Castegna, A ;
Aksenov, M ;
Thongboonkerd, V ;
Klein, JB ;
Pierce, WM ;
Booze, R ;
Markesbery, WR ;
Butterfield, DA .
JOURNAL OF NEUROCHEMISTRY, 2002, 82 (06) :1524-1532