Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase β

被引:59
作者
Le Page, F [1 ]
Schreiber, V
Dhérin, C
de Murcia, G
Boiteux, S
机构
[1] CEA Radiobiol Mol & Cellulaire, CNRS,UMR 217, Dept Radiobiol & Radiopathol, Direct Sci Vivant, F-92265 Fontenay Aux Roses, France
[2] Univ Strasbourg 1, Ecole Super Biotechnol Strasbourg, CNRS, Unite Propre Rech 9003, F-67400 Illkirch Graffenstaden, France
关键词
D O I
10.1074/jbc.M212905200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative DNA base damage is mainly corrected by the base excision repair (BER) pathway, which can be divided into two subpathways depending on the length of the resynthetized patch, either one nucleotide for short patch BER or several nucleotides for long patch BER. The role of proteins in the course of BER processes has been investigated in vitro using purified enzymes and cell-free extracts. In this study, we have investigated the repair of 8-oxo-7,8-dihydroguanine (8-oxoG) in vivo using wild-type, polymerase beta(-/-) (Polbeta(-/-)), poly(ADP-ribose) polymerase-1(-/-) (PARP-1(-/-)), and Polbeta(-/-)PARP-1(-/-) 3T3 cell lines. We used non replicating plasmids containing a 8-oxoG:C base pair to study the repair of the lesion located in a transcribed sequence (TS) or in a non-transcribed sequence (NTS). The results show that 8-oxoG repair in TS is not significantly impaired in cells deficient in Polbeta or PARP-1 or both. Whereas 8-oxoG repair in NTS is normal in Polbeta-null cells, it is delayed in PARP-1-null cells and greatly impaired in cells deficient in both Polbeta and PARP-1. The removal of 8-oxoG and presumably the cleavage at the resulting apurinic/apyrimidinic site are not affected in the PARP-1(-/-)Polbeta(-/-) cell lines. However, 8-oxoG repair is incomplete, yielding plasmid molecules with a nick at the site of the lesion. Therefore, PARP-1(-/-)Polbeta(-/-) cell lines cannot perform 5'-dRP removal and/or DNA repair synthesis. Furthermore, the poly(ADP-ribosyl) ation activity of PARP-1 is essential for 8-oxoG repair in a Polbeta(-/-) context, because expression of the catalytically inactive PARP-1 (E988K) mutant does not restore 8-oxoG repair, whereas an wild type PARP-1 does.
引用
收藏
页码:18471 / 18477
页数:7
相关论文
共 84 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   DNA polymerase β is the major dRP lyase involved in repair of oxidative base lesions in DNA by mammalian cell extracts [J].
Allinson, SL ;
Dianova, II ;
Dianov, GL .
EMBO JOURNAL, 2001, 20 (23) :6919-6926
[3]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[4]   Oxidative decay of DNA [J].
Beckman, KB ;
Ames, BN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :19633-19636
[5]   DNA excision repair and DNA damage-induced apoptosis are linked to poly(ADP-ribosyl)ation but have different requirements for p53 [J].
Beneke, R ;
Geisen, C ;
Zevnik, B ;
Bauch, T ;
Müller, WU ;
Küpper, JH ;
Möröy, T .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (18) :6695-6703
[6]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[7]   The human OGG1 gene:: Structure, functions, and its implication in the process of carcinogenesis [J].
Boiteux, S ;
Radicella, JP .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 377 (01) :1-8
[8]  
BOITEUX S, 1990, J BIOL CHEM, V265, P3916
[9]   Physiology and pathophysiology of poly(ADP-ribosyl)ation [J].
Bürkle, A .
BIOESSAYS, 2001, 23 (09) :795-806
[10]   XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro [J].
Caldecott, KW ;
Aoufouchi, S ;
Johnson, P ;
Shall, S .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4387-4394