Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD

被引:93
作者
Anderson, Ariana [1 ]
Douglas, Pamela K. [1 ]
Kerr, Wesley T. [1 ]
Haynes, Virginia S. [2 ]
Yuille, Alan L. [3 ]
Xie, Jianwen [3 ]
Wu, Ying Nian [3 ]
Brown, Jesse A. [4 ]
Cohen, Mark S. [5 ,6 ,7 ,8 ,9 ]
机构
[1] Univ Calif Los Angeles, Dept Psychiat & Biobehav Sci, Los Angeles, CA 90095 USA
[2] Eli Lilly & Co, Global Hlth Outcomes, Indianapolis, IN 46285 USA
[3] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[4] Univ Calif San Francisco, Dept Neurol, Memory & Aging Ctr, San Francisco, CA USA
[5] Univ Calif Los Angeles, Dept Psychiat Neurol, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Calif Nanosyst Inst CNSI, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90024 USA
[9] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90024 USA
关键词
fMRI; Multimodal data; NMF; ADHD; Phenotype; MRI; Latent variables; Biomarkers; Sparsity; Machine learning; Topic modeling; Attention deficit; Default mode; ABNORMAL FUNCTIONAL CONNECTIVITY; EEG/FMRI ANALYSIS; DISORDER ADHD; RESTING-STATE; NETWORK; HYPERACTIVITY; GENE; CLASSIFICATION; ALGORITHMS; CINGULATE;
D O I
10.1016/j.neuroimage.2013.12.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In the multimodal neuroimaging framework, data on a single subject are collected from inherently different sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information each source provides is not independent; a subset of features from each modality maps to one or more common latent dimensions, which can be interpreted using generative models. These latent dimensions, or "topics," provide a sparse summary of the generative process behind the features for each individual. Topic modeling, an unsupervised generative model, has been used to map seemingly disparate features to a common domain. Weuse Non-NegativeMatrix Factorization (NMF) to infer the latent structure of multimodal ADHD data containing fMRI, MRI, phenotypic and behavioral measurements. We compare four different NMF algorithms and find that the sparsest decomposition is also the most differentiating between ADHD and healthy patients. Weidentify dimensions that map to interpretable, recognizable dimensions such as motion, default mode network activity, and other such features of the input data. For example, structural and functional graph theory features related to default mode subnetworks clustered with the ADHD-Inattentive diagnosis. Structural measurements of the default mode network (DMN) regions such as the posterior cingulate, precuneus, and parahippocampal regions were all related to the ADHD-Inattentive diagnosis. Ventral DMN subnetworks may have more functional connections in ADHD-I, while dorsal DMN may have less. ADHD topics are dependent upon diagnostic site, suggesting diagnostic differences across geographic locations. We assess our findings in light of the ADHD-200 classification competition, and contrast our unsupervised, nominated topics with previously published supervised learning methods. Finally, we demonstrate the validity of these latent variables as biomarkers by using them for classification of ADHD in 730 patients. Cumulatively, this manuscript addresses how multimodal data in ADHD can be interpreted by latent dimensions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 70 条
[1]  
[Anonymous], 1986, P 1986 PARALLEL DIST
[2]  
[Anonymous], 2012, R LANG ENV STAT COMP
[3]  
[Anonymous], 2003, P 26 ANN INT ACM SIG, DOI DOI 10.1145/860435.860485
[4]  
[Anonymous], 4 IEEE INT S BIOM IM
[5]  
[Anonymous], 2000, DIAGN STAT MAN MENT, DOI DOI 10.1176/APPI.BOOKS.9780890425787
[6]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[7]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[8]   ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements [J].
Brown, Matthew R. G. ;
Sidhu, Gagan S. ;
Greiner, Russell ;
Asgarian, Nasimeh ;
Bastani, Meysam ;
Silverstone, Peter H. ;
Greenshaw, Andrew J. ;
Dursun, Serdar M. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6 :1-22
[9]   The brain's default network - Anatomy, function, and relevance to disease [J].
Buckner, Randy L. ;
Andrews-Hanna, Jessica R. ;
Schacter, Daniel L. .
YEAR IN COGNITIVE NEUROSCIENCE 2008, 2008, 1124 :1-38
[10]   A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data [J].
Calhoun, Vince D. ;
Liu, Jingyu ;
Adali, Tuelay .
NEUROIMAGE, 2009, 45 (01) :S163-S172