Nanoscale Control of Optical Heating in Complex Plasmonic Systems

被引:612
作者
Baffou, Guillaume [2 ]
Quidant, Romain [2 ,3 ]
Javier Garcia de Abajo, F. [1 ]
机构
[1] CSIC, Inst Opt, E-28006 Madrid, Spain
[2] ICFO, Barcelona 08860, Spain
[3] ICREA, Barcelona 08010, Spain
关键词
plasmonics; optical heating; thermodynamics; nanophotonics boundary element method; nanoscale control; ELECTROMAGNETIC ENERGY-TRANSPORT; METAL NANOPARTICLES; LIMIT;
D O I
10.1021/nn901144d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a numerical technique to investigate the temperature distribution in arbitrarily complex plasmonic systems subject to external illumination, We perform both electromagnetic and thermodynamic calculations based upon a time-efficient boundary element method. Two kinds of plasmonic systems are investigated in order to illustrate the potential of such a technique. First, we focus on individual particles with various morphologies. In analogy with electrostatics, we introduce the concept of thermal capacitance. This geometry-dependent quantity allows us to assess the temperature increase inside a plasmonic particle from the sole knowledge of its absorption cross section. We present universal thermal-capacitance curves for ellipsoids, rods, disks, and rings. Additionally, we investigate assemblies of nanoparticles in close proximity and show that, despite its diffusive nature, the temperature distribution can be made highly non-uniform even at the nanoscale using plasmonic systems. A significant degree of nanoscale control over the individual temperatures of neighboring particles is demonstrated, depending on the external light wavelength and direction of incidence. We illustrate this concept with simulations of gold sphere dimers and chains in water. Our work opens new possibilities for selectively controlling processes such as local melting for dynamic patterning of textured materials, chemical and metabolic thermal activation, and heat delivery for producing mechanical motion with spatial precision in the nanoscale.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 32 条
[1]   Heat generation in plasmonic nanostructures: Influence of morphology [J].
Baffou, G. ;
Quidant, R. ;
Girard, C. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[2]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[3]   Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment [J].
Berciaud, S ;
Lasne, D ;
Blab, GA ;
Cognet, L ;
Lounis, B .
PHYSICAL REVIEW B, 2006, 73 (04)
[4]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[5]   Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes [J].
Cao, Linyou ;
Barsic, David N. ;
Guichard, Alex R. ;
Brongersma, Mark L. .
NANO LETTERS, 2007, 7 (11) :3523-3527
[6]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[7]  
de Abajo FJG, 1998, PHYS REV LETT, V80, P5180
[8]   Multiple scattering of radiation in clusters of dielectrics [J].
de Abajo, FJG .
PHYSICAL REVIEW B, 1999, 60 (08) :6086-6102
[9]   Retarded field calculation of electron energy loss in inhomogeneous dielectrics [J].
de Abajo, FJG ;
Howie, A .
PHYSICAL REVIEW B, 2002, 65 (11) :1154181-11541817
[10]  
Eckert E. R. G., 1959, HEAT MASS TRANSFER