Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization

被引:28
作者
Riegler J. [1 ,3 ]
Ditengou F. [2 ]
Palme K. [2 ]
Nann T. [3 ]
机构
[1] Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart
[2] Institute of Biology II/Botany, Faculty of Biology, Albert-Ludwig University Freiburg, 79104 Freiburg
[3] School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, Norwich Research Park
来源
J. Nanobiotechnology | 2008年 / 6卷 / 1期
关键词
18;
D O I
10.1186/1477-3155-6-7
中图分类号
学科分类号
摘要
Luminescence color multiplexing is one of the most intriguing benefits, which might occur by using semiconductor Quantum Dots (QDs) as labels for biomolecules. It was found, that the luminescence of QDs can be quenched, and replaced by a luminescence peak at approximately 460 nm on hybridization with certain regions of Arabidopsis thaliana tissue. This effect is site selective, and it is unclear whether it occurs due to an energy transfer process, or due to quenching and scattering of the excitation light. The article describes methods for phase-transfer of differently coloured, hydrophobically ligated QDs, coupling of DNA strands to the QD's surface, and hybridization of the labelled DNA to different cell types of Arabidopsis thaliana. The reason for the luminescence blue-shift was studied systematically, and narrowed down to the above mentioned causes. © 2008 Riegler et al; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 18 条
[1]  
Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A.P., Semiconductor nanocrystals as fluorescent biological labels, Science, 281, pp. 2013-2016, (1998)
[2]  
Warren C.W.C., Nie S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 281, pp. 2016-2018, (1998)
[3]  
Sun B., Xie W., Yi G., Chen D., Cheng Y., Zhou J., Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection, J Immunol Methods, 249, pp. 85-89, (2001)
[4]  
Jaiswal J.K., Mattoussi H., Mauro J.M., Simon S.M., Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nature Biotechnol, 21, pp. 47-51, (2003)
[5]  
Riegler J., Nick P., Kielmann U., Nann T., Visualizing the Self-Assembly of Tubulin with Luminescent Nanorods, J Nanosci Nanotech, 3, pp. 380-385, (2003)
[6]  
Goldman E.R., Anderson G.P., Tran P.R., Mattoussi H., Charles P.T., Mauro J.M., Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein to Provide New Reagents for Fluoroimmunoassay, Anal Chem, 74, pp. 841-847, (2002)
[7]  
Tomaselli M., Yarger J., Bruchez M., Havlin R.H., DeGraw D., Pines A., Alivisatos A.P., NMR study of InP quantum dots: Surface structure and size effects, J Chem Phys, 110, pp. 8861-8864, (1999)
[8]  
Hanaki K., Momo A., Oku T., Komoto A., Maenosono S., Yamaguchi Y., Yamamoto K., Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker, Biochem Biophys Res Commun, 302, pp. 496-501, (2003)
[9]  
Seydel C., Quantum Dots Get Wet, Science, 300, pp. 80-81, (2003)
[10]  
Dubertret B., Skourides P., Norris D.J., Noireaus V., Brivanlou A.H., Libchaber A., In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298, pp. 1759-1762, (2002)