Large-scale T-DNA mutagenesis in Arabidopsis for functional genomic analysis

被引:40
作者
Galbiati M. [1 ,2 ]
Moreno M.A. [1 ]
Nadzan G. [1 ,3 ]
Zourelidou M. [1 ]
Dellaporta S.L. [1 ]
机构
[1] Yale University, Department of Molecular, Cellular and Developmental Biology, New Haven
[2] Dipartimento di Genetica e Biologia Microrganismi, Universita' degli Studi di Milano, Milan
[3] Mendel Biotechnology, Inc., Hayward, CA 94545
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Arabidopsis thaliana; Functional genomics; Insertional mutagenesis; T-DNA;
D O I
10.1007/s101420000007
中图分类号
学科分类号
摘要
In planta Agrobacterium-mediated transformation combined with a soil-based herbicide selection for transgenic plants was used to recover large numbers of transgenic Arabidopsis plants for functional genomic studies. A tissue-culture-free system for generating transgenic plants was achieved by infiltrating Arabidopsis plants with Agrobacterium tumefaciens harboring a binary T-DNA vector containing the phosphinothricin acetyltransferase gene from Streptomyces hygroscopicus, and by selecting transgenic Arabidopsis growing in soil by foliar application of the herbicide Finale (phosphinothricin). Analysis of herbicide-resistant plants indicated that all were transgenic and that the T-DNA transformation process occurred late during flower development, resulting in a preponderance of independently derived T-DNA insertions. T-DNA insertions were usually integrated in a concatenated, rearranged form, and using linkage analysis, we estimated that T1 plants carried between one and five T-DNA loci. Using pooling strategies, both DNA and seed pools were generated from about 38,000 Arabidopsis plants representing over 115,000 independent T-DNA insertions. We show the utility of these transgenic lines for identifying insertion mutations using gene sequence and PCR-based screening. © Springer-Verlag 2000.
引用
收藏
页码:25 / 34
页数:9
相关论文
共 46 条
  • [1] Akama K., Puchta H., Holn B., Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker, Plant Cell Rep, 14, pp. 450-454, (1995)
  • [2] Ballinger D.G., Benzer S., Target gene mutations in Drosophila, Proc Natl Acad Sci USA, 86, pp. 9402-9406, (1989)
  • [3] Bayer E., Gugel K.H., Hagenmaier K., Jessipow S., Koning W.A., Zahner H., Stoffwechselprodukte von Mikoorganismen. Phosphinotricin und phosphinothricyl-alanyl-alanin, Helv Chim Acta, 55, pp. 224-239, (1972)
  • [4] Bechtold N., Pelletier G., In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration, Methods Mol Biol, 82, pp. 259-266, (1998)
  • [5] Bechtold N., Ellis J., Pelletier G., In planta Agrobacterium-mediated gene transfer by infilatration of adult Arabidopsis thaliana plants, C R Acad Sci III, 316, pp. 1194-1199, (1993)
  • [6] Benfey P.N., Chua N.-H., The cauliflower mosaic virus 35S promoter: Combinatorial regulation of transcription in plants, Science, 250, pp. 959-960, (1990)
  • [7] Bevan M., Ecke J., Theologis S., Federspie N., Davis R., McCombie D., Martienssen R., Chen E., Waterston B., Wilson R., Rounsley S., Venter C., Tabata S., Salanoubat M., Quetier F., Cherry J.M., Meinke D., Objective: The complete sequence of a plant genome, Plant Cell, 9, pp. 476-478, (1997)
  • [8] Block M.D., Botterman J., Vandewiele M., Dockx J., Thoen C., Movva N.R., Thompson C., Montagu M.V., Leemans J., Engineering herbicide resistance in plants by expression of a detoxifying enzyme, EMBO J, 6, pp. 2513-2518, (1987)
  • [9] Bonhomme S., Horlow C., Vezon D., Laissardiere Sd., Guyon A., Ferault M., Marchand M., Bechtold N., Pelletier G., T-DNA disruption of essential gametophytic genes in Arabidopsis is unexpectedely rare and cannot be inferred from segregation distortion criteria only, Mol Gen Genet, 260, pp. 444-452, (1998)
  • [10] Brown E.L., Belagaje R., Ryan M.J., Khorana H.G., Chemical synthesis and cloning of a tyrosine tRNA gene, Methods Enzymol, 68, pp. 109-151, (1979)