Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models

被引:5
作者
Niclas Bergman
Arnaud Doucet
Neil Gordon
机构
[1] Linköping University,Division of Automatic Control
[2] University of Cambridge,Signal Processing Group, Department of Engineering
[3] Defence Evaluation and Research Agency,undefined
来源
Annals of the Institute of Statistical Mathematics | 2001年 / 53卷
关键词
Optimal estimation; Bayesian inference; sequential Monte Carlo methods; posterior Cramér-Rao bounds;
D O I
暂无
中图分类号
学科分类号
摘要
Partial non-Gaussian state-space models include many models of interest while keeping a convenient analytical structure. In this paper, two problems related to partial non-Gaussian models are addressed. First, we present an efficient sequential Monte Carlo method to perform Bayesian inference. Second, we derive simple recursions to compute posterior Cramér-Rao bounds (PCRB). An application to jump Markov linear systems (JMLS) is given.
引用
收藏
页码:97 / 112
页数:15
相关论文
共 36 条
[1]  
Bergman N.(1999)Terrain navigation using Bayesian statistics IEEE Control Systems Magazine 19 33-40
[2]  
Ljung L.(1975)A lower bound on the estimation error for Markov processes IEEE Trans. Automat. Control 20 785-788
[3]  
Gustafsson F.(1994)On Gibbs sampling for state space models Biometrika 81 541-553
[4]  
Borobsky B. Z.(1996)Markov chain Monte Carlo methods in conditionally Gaussian state space models Biometrika 83 589-601
[5]  
Zakai M.(1999)Discrete filtering using branching and interacting particle systems Markov Processes and Related Fields 5 293-318
[6]  
Carter C. K.(1995)Cramér-Rao bounds for discrete-time nonlinear filtering problems IEEE Trans. Automat. Control 40 1465-1469
[7]  
Kohn R.(2000)On sequential Monte Carlo sampling methods for Bayesian filtering Statist. Comput. 10 197-208
[8]  
Carter C. K.(1994)Data augmentation and dynamic linear models J. Time Ser. Anal. 15 183-202
[9]  
Kohn R.(1980)A Cramér-Rao bound for discrete-time nonlinear filtering problems IEEE Trans. Automat. Control 25 117-119
[10]  
Crisan D.(1995)Applications of the Van Trees inequality: a Bayesian Cramér Rao bound Bernoulli 1 59-79