Speeding up the Dreyfus–Wagner algorithm for minimum Steiner trees

被引:2
作者
Bernhard Fuchs
Walter Kern
Xinhui Wang
机构
[1] University of Cologne,Center for Applied Computer Science Cologne (ZAIK)
[2] University of Twente,Department of Applied Mathematics, Faculty of EEMCS
来源
Mathematical Methods of Operations Research | 2007年 / 66卷
关键词
Steiner tree; Exact algorithm; Dynamic programming;
D O I
暂无
中图分类号
学科分类号
摘要
The Dreyfus–Wagner algorithm is a well-known dynamic programming method for computing minimum Steiner trees in general weighted graphs in time O*(3k), where k is the number of terminal nodes to be connected. We improve its running time to O*(2.684k) by showing that the optimum Steiner tree T can be partitioned into T = T1∪ T2 ∪ T3 in a certain way such that each Ti is a minimum Steiner tree in a suitable contracted graph Gi with less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{k}{2}}$$\end{document} terminals. In the rectilinear case, there exists a variant of the dynamic programming method that runs in O*(2.386k). In this case, our splitting technique yields an improvement to O*(2.335k).
引用
收藏
页码:117 / 125
页数:8
相关论文
共 7 条
[1]  
Dreyfus SE(1972)The Steiner problem in graphs Networks 1 195-207
[2]  
Wagner RA(2000)On exact solutions for the rectilinear Steiner tree problem Part 1: Theoretical results Algorithmica 26 68-99
[3]  
Fößmeier U(1977)The rectilinear Steiner tree problem is NP-complete SIAM J Appl Math 32 826-834
[4]  
Kaufmann M(1976)On Steiner minimal trees with rectilinear distance SIAM J Appl Math 30 104-114
[5]  
Garey M(undefined)undefined undefined undefined undefined-undefined
[6]  
Johnson D(undefined)undefined undefined undefined undefined-undefined
[7]  
Hwang FK(undefined)undefined undefined undefined undefined-undefined