The secondary structure of mammalian mitochondrial 16S rRNA molecules: Refinements based on a comparative phylogenetic approach

被引:52
作者
Burk A. [1 ]
Douzery E.J.P. [1 ]
Springer M.S. [1 ,2 ]
机构
[1] Department of Biology, University of California, Riverside
[2] Labortoire de Paléontologie, Institut Des Sciences de l'Evolution, Unitersité Montpellier II, F-34 095 Montpellier Cedex 05, Place E. Bataillon
基金
美国国家科学基金会;
关键词
Eutheria; Mammalia; Metatheria; Mitochondrial 16s ribosomal RNA; Secondary structure;
D O I
10.1023/A:1022649516930
中图分类号
学科分类号
摘要
Eighty six complete 16S ribosomal RNA (rRNA) gene sequences representing every mammalian order (one monotreme, 33 marsupials, 52 placentals) were employed to establish a core secondary structure model for mammalian 16S rRNA. Starting with the Gutell et al. (1993) and De Rijk et al. (1999) models, we used the criteria of potential base-pairing and positional covariance to make refinements in these models for mammalian 16S rRNA molecules. Our results suggest a mammalian secondary structure model with deletions as well as additions to the Gutell et al. (1993) and De Rijk et al. (1999) models for cow. We recognize 53 stems, 41 of which show at least some positional covariance within Mammalia. In addition, we recognize four tertiary interactions. Stems and loops have distinctly different properties, including base composition and relative substitution rates. Accounting for these differences results in improved models of sequence evolution. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:225 / 252
页数:27
相关论文
共 71 条
[1]  
Arnason U., Adegoke J.A., Bodin K., Born E.W., Esa Y.B., Gullberg A., Nilsson M., Short R.V., Xu X., Janke A., Mammalian mitogenomic relationships and the root of the eutherian tree, Proc. Natl. Acad. Sci. USA, 99, pp. 8151-8156, (2002)
[2]  
Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A., The complete atomic structure of the large ribosomal subunit at 2.4 A resolution, Science, 289, pp. 905-920, (2000)
[3]  
Bocchetta M., Xiong L., Mankin A.S., 23S rRNA positions essential for tRNA binding in ribosomal functional sites, Proc. Natl. Acad. Sci. USA, 95, pp. 3525-3530, (1998)
[4]  
Brigotti M., Rambelli F., Zamboni M., Montanaro L., Sperti S., Effect of a-sarcin and ribosomeinactiviating proteins on the interaction of elongation factors with ribosomes, Biochem. J., 257, pp. 723-727, (1989)
[5]  
Dahlberg A.E., The functional role of ribosomal RNA in protein synthesis, Cell, 57, pp. 525-529, (1989)
[6]  
D'Erchia A.M., Gissi C., Pesole G., Saccone C., Arnason U., The guinea pig is not a rodent, Nature, 381, pp. 597-600, (1996)
[7]  
De Rijk P., Robbrecht E., De Hoog S., Caers A., Van Peer D., De Wachter R., Database on the structure of large subunit ribosomal RNA, Nucleic Acids Res., 27, pp. 174-178, (1999)
[8]  
Doring T., Greuer B., Brimacombe R., The three dimensional folding of ribosomal RNA: Localization of a series of intra-RNA cross-links in 23 S RNA induced by treatment of Escherichia coli 50 S ribosomal subunits with bis (2-chloroethyl)-methylamine, Nucleic Acids Res., 20, pp. 3517-3524, (1991)
[9]  
Elaradi T.T.A., Raue H.A., De Regt V.C.H., Verbree E.C., Planta R.J., Yeast ribosomal protein L25 binds to an evolutionary conserved site on yeast 26S and E coli 23S rRNA, EMBO J., 4, pp. 2101-2107, (1985)
[10]  
Fox G.E., Woese C.E., 5S RNA secondary structure, Nature, 256, pp. 505-507, (1975)