On the Area Bisectors of a Polygon

被引:18
作者
K. -F. Böhringer
B. R. Donald
D. Halperin
机构
[1] Department of Electrical Engineering,
[2] University of Washington,undefined
[3] Box 352500,undefined
[4] Seattle,undefined
[5] WA 98195-2500,undefined
[6] USA karl@ee.washington.edu,undefined
[7] www.ee.washington.edu/faculty/karl ,undefined
[8] Department of Computer Science,undefined
[9] Dartmouth College,undefined
[10] 6211 Sudikoff Laboratory,undefined
[11] Hanover,undefined
[12] NH 03755-3510,undefined
[13] USA brd@cs.dartmouth.edu,undefined
[14] www.cs.dartmouth.edu/ {}brd ,undefined
[15] Department of Computer Science,undefined
[16] Tel Aviv University,undefined
[17] Tel Aviv 69978,undefined
[18] Israel halperin@math.tau.ac.il,undefined
[19] www.math.tau.ac.il/ {}halperin,undefined
关键词
Explicit Representation; Distinct Area; Simple Polygon; Algebraic Characterization;
D O I
10.1007/PL00009460
中图分类号
学科分类号
摘要
We consider the family of lines that are area bisectors of a polygon (possibly with holes) in the plane. We say that two bisectors of a polygon P are combinatoriallydistinct if they induce different partitionings of the vertices of P . We derive an algebraic characterization of area bisectors. We then show that there are simple polygons with n vertices that have Ω(n2) combinatorially distinct area bisectors (matching the obvious upper bound), and present an output-sensitive algorithm for computing an explicit representation of all the bisectors of a given polygon.
引用
收藏
页码:269 / 285
页数:16
相关论文
empty
未找到相关数据