Cationic surface segregation in donor-doped SrTiO3 under oxidizing conditions

被引:8
作者
Meyer R. [1 ]
Waser R. [1 ]
Helmbold J. [2 ]
Borchardt G. [2 ]
机构
[1] Inst. Werkstoffe der Elektrotech. II, Aachen University, Aachen
[2] Institut für Metallurgie, TU Clausthal, Clausthal-Zellerfeld
关键词
Cation vacancy diffusion; Donor; Perovskite; Ruddlesden-Popper phases; SrO secondary phase;
D O I
10.1023/A:1022898104375
中图分类号
学科分类号
摘要
The influence of high temperature oxygen annealing on (100) oriented donor-doped SrTiO3 single crystals was studied. Crystalline precipitates were found on the optical scale on surfaces of lanthanum-doped as well as niobium-doped specimens with donor concentrations above 0.5 at. %. The amount of the secondary phase increases with the doping level, oxidation temperature and oxidation time. EDX analyses of the crystallites reveal a SrOx composition. The formation of the observed secondary phase is discussed by means of the defect re-equilibration of the cation sub-lattice. In view of the point defect model for donor-doped perovskites, n-conducting SrTiO3 changes its compensation mechanism during an oxidation treatment from "electronic compensation" (ND = n) to "self-compensation" (ND = 2[VSr″]) by forming cation vacancies. Due to the favored Schottky-type disorder in perovskites, the formation of strontium vacancies is accompanied by a release of strontium from the regular lattice. Since the excess strontium is found to be situated at the surface in form of SrO-rich precipitates only, we propose the formation of strontium vacancies via a surface defect reaction and the chemical diffusion of strontium vacancies from the surface into the crystal as the most probable re-equilibration mechanism for the oxidation treatment of single crystals. The introduced mechanism is in contrast to an established model which proposes the formation of Ruddlesden-Popper intergrowth phases SrO-(SrTiO3)n in the interior of the crystal.
引用
收藏
页码:101 / 110
页数:9
相关论文
共 16 条
[1]  
Moos R., Bischoff T., Menesklou W., Hardtl K.H., Journal of Materials Science, 32, (1997)
[2]  
Moos R., Donatordotierungen in Strontiumtitanant: Elektrische Eigenschaften und Modellhafte Beschreibung, 5, 362, (1994)
[3]  
Poignant F., L'oxydation de Céramiques à Base de Titanate de Strontium Semi-conducteur et la Formation de Barrière de Potentiel aux Joints de Grains, (1995)
[4]  
Menesklou W., Kompensationsmechanismen der Überschußladung in Lanthandotiertem Barium- und Strontiumtitanat, 5, 481, (1997)
[5]  
Eror N.G., Balachandran U., J. Sol. State Chem., 40, (1981)
[6]  
Moos R., Hardtl K.H., J. Am. Ceram. Soc., 80, (1997)
[7]  
Ruddlesden S.N., Popper P., Acta Crys., 11, (1957)
[8]  
Menesklou W., Schreiner H.-J., Hardtl K.H., Ivers-Tiffee E., Sensors and Actuators B, 59, (1999)
[9]  
Meyer R., Szot K., Waser R., Ferroelectrics, 224, (1999)
[10]  
Helmbold J., Borchardt G., Meyer R., Waser R., Weber S., Scherrer S., NATO ASI Series 3, 77, (2000)