An Algorithm for Total Variation Minimization and Applications

被引:166
作者
Antonin Chambolle
机构
[1] Université de Paris-Dauphine,CEREMADE–CNRS UMR 7534
来源
Journal of Mathematical Imaging and Vision | 2004年 / 20卷
关键词
total variation; image reconstruction; denoising; zooming; mean curvature motion;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an algorithm for minimizing the total variation of an image, and provide a proof of convergence. We show applications to image denoising, zooming, and the computation of the mean curvature motion of interfaces.
引用
收藏
页码:89 / 97
页数:8
相关论文
共 21 条
[1]  
Chambolle A.(1997)Image recovery via total vari-ation minimization and related problems Numer. Math. 76 167-188
[2]  
Lions P.-L.(1999)A nonlinear primal-dual method for total variation-based image restoration SIAM J. Sci. Comput. 20 1964-1977
[3]  
Chan T.F.(2000)Global total variation minimiza-tion SIAM J. Numer. Anal. 37 646-664
[4]  
Golub G.H.(1997)Convergence of an iterative method for total variation denoising SIAM J. Numer. Anal. 34 1779-1791
[5]  
Mulet P.(1998)Total variation based inter-polation Proceedings of the European Signal Processing Conference 3 1741-1744
[6]  
Dibos F.(1996)Acomputational algorithm for minimizing total variation in image restoration IEEE Trans. Image Process-ing 5 987-995
[7]  
Koepfler G.(2001)Edge direction preserving im-age zooming: A mathematical and numerical analysis SIAM J. Numer. Anal. 39 1-37
[8]  
Dobson D.C.(1992)Nonlinear total variation based noise removal algorithms Physica D 60 259-268
[9]  
Vogel C.R.(1999)Fast marching methods SIAM Rev. 41 199-235
[10]  
Guichard F.(1996)Iterative methods for total varia-tion denoising SIAM J. Sci. Comput. 17 227-238