Multiple expert classification: A new methodology for parallel decision fusion

被引:8
作者
Rahman A.F.R. [1 ]
Fairhurst M.C. [1 ]
机构
[1] Electronic Engineering Laboratory, University of Kent, Canterbury
关键词
Character recognition; Decision fusion; Hybrid framework; Multiple expert configurations;
D O I
10.1007/PL00013554
中图分类号
学科分类号
摘要
A new parallel hybrid decision fusion methodology is proposed. It is demonstrated that existing parallel multiple expert decision combination approaches can be divided into two broad categories based on the implicit decision emphasis implemented. The first category consists of methods implementing computationally intensive decision frameworks incorporating a priori information about the target task domain and the reliability of the participating experts, while the second category encompasses approaches implementing group consensus without assigning any importance to the reliability of the experts and ignoring other contextual information. The methodology proposed in this paper is a hybridisation of these two approaches and has shown significant performance enhancements in terms of higher overall recognition rates along with lower substitution rates. Detailed analysis using two different databases supports this claim. © 2000 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:40 / 55
页数:15
相关论文
共 32 条
[1]  
Bagui S.C., Pal N.R., A multistage generalization of the rank nearest neighbor classification rule, Pattern Recognition Lett, 16, 6, pp. 601-614, (1995)
[2]  
Black D., The Theory of Committeesand Election, (1958)
[3]  
Black D., Newing R.A., Committee Decisions with Complementary Valuation, (1951)
[4]  
Cantor, Vorlesungen über Geschichte der Mathematik, 4, (1980)
[5]  
de Borda J.-C., Mémoire sur les électionsau Scrutin, Mémoire de l'Académie Royale des Sciences, (1953)
[6]  
de Condorcet N.C., Essai sur l'Application de l'Analyze à la Probabilité desD écisionsRenduesà la Pluralité des Voix, (1785)
[7]  
Dimauro G., Impedovo S., Pirlo G., Salzo A., A multiexpert signature verification system for bankcheck processing, Int. J. Pattern Recognition and Artif. Intell, 11, 5, pp. 827-844, (1997)
[8]  
Dodgson C.L., A Discussion of the Various Methods of Procedure in Conducting Elections, Preface, (1873)
[9]  
Fairhurst M.C., Mattaso Maia M.A.G., Performance comparison in hierarchical architectures for memory network pattern classifiers, Pattern Recognition Lett, 4, 2, pp. 121-124, (1986)
[10]  
Fairhurst M.C., Rahman A.F.R., Enhancing consensus in multiple expert decision fusion, IEE Proc. on Vision, Image and Signal Process, (2000)