Microfluidics in biotechnology

被引:62
作者
Barry R. [1 ]
Ivanov D. [2 ]
机构
[1] School of Biol. Sci. Royal Holloway, University of London, Egham
[2] Lab. de Physique des Polymeres, Université Libre de Bruxelles
关键词
Microfluidic Chip; Microfluidics Channel; Microfluidic System; Microfluidic Technology; Hybridisation Time;
D O I
10.1186/1477-3155-2-2
中图分类号
学科分类号
摘要
Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarray assay hybridisation times. The linking of microfluidics to protein analysis techologies, e.g. mass spectrometry, enables picomole amounts of peptide to be analysed within a controlled micro-environment. The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines. © 2004 Barry and Ivanov; licensee BioMed Central Ltd.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
Zhang N., Tan H., Yeung E.S., Automated and integrated system for high-throughput DNA genotyping directly from blood, Anal. Chem., 71, pp. 1138-1145, (1999)
[2]  
Foquet M., Korlach J., Zipfel W., Webb W.W., Craighead H.G., DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels, Anal. Chem., 74, pp. 1415-1422, (2002)
[3]  
Clark J., Shevchuk T., Swiderski P.M., Dabur R., Crocitto L.E., Buryanov Y.I., Smith S.S., Mobility-shift analysis with microfluidics chips, Biotechniques, 35, pp. 548-554, (2003)
[4]  
Lenigk R., Liu R.H., Athavale M., Chen Z., Ganser D., Yang J., Rauch C., Liu Y., Chan B., Yu H., Ray M., Marrero R., Grodzinski P., Plastic biochannel hybridization devices: A new concept for microfluidic DNA arrays, Anal. Biochem., 311, pp. 40-49, (2002)
[5]  
Wang Y., Vaidya B., Farquar H.D., Stryjewski W., Hammer R.P., McCarley R.L., Soper S.A., Cheng Y.W., Barany F., Microarrays assembled in microfluidic chips fabricated from poly(methyl methacrylate) for the detection of low-abundant DNA mutations, Anal. Chem., 75, pp. 1130-1140, (2003)
[6]  
Liu R.H., Lenigk R., Druyor-Sanchez R.L., Yang J., Grodzinski P., Hybridization enhancement using cavitation microstreaming, Anal. Chem., 75, pp. 1911-1917, (2003)
[7]  
Figeys D., Gygi S.P., McKinnon G., Aebersold R., An integrated microfluidics-tandem mass spectrometry system for automated protein analysis, Anal. Chem., 70, pp. 3728-3734, (1998)
[8]  
Figeys D., Aebersold R., High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: Recent developments in technology and applications, Electrophoresis, 19, pp. 885-892, (1998)
[9]  
Lion N., Gellon J.O., Jensen H., Girault H.H., On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry, J. Chromatogr. A, 1003, pp. 11-19, (2003)
[10]  
Soloviev M., Barry R., Scrivener E., Terrett J., Combinatorial peptidomics: A generic approach for protein expression profiling, J. Nanobiotechnology, 1, (2003)