Escrow-free encryption supporting cryptographic workflow

被引:2
作者
Al-Riyami S.S. [1 ]
Malone-Lee J. [2 ]
Smart N.P. [2 ]
机构
[1] Center of Excellence, E-Government, Muscat PC 112
[2] Department of Computer Science, University of Bristol, Bristol BS8 1UB, Woodland Road
关键词
Identity based encryption; Pairings; Workflow;
D O I
10.1007/s10207-006-0002-x
中图分类号
学科分类号
摘要
Since Boneh and Franklin published their seminal paper on identity based encryption (IBE) using the Weil pairing, there has been a great deal of interest in cryptographic primitives based on elliptic-curve pairings. One particularly interesting application has been to control access to data, via possibly complex policies. In this paper we continue the research in this vein. We present an encryption scheme such that the receiver of an encrypted message can only decrypt if it satisfies a particular policy chosen by the sender at the time of encryption. Unlike standard IBE, our encryption scheme is escrow free in that no credential-issuing authority (or colluding set of credential-issuing authorities) is able to decrypt ciphertexts itself, providing the users' public keys are properly certified. In addition we describe a security model for the scenario in question and provide proofs of security for our scheme (in the random oracle model). © Springer-Verlag 2006.
引用
收藏
页码:217 / 229
页数:12
相关论文
共 17 条
[1]  
Al-Riyami S.S., Cryptographic schemes based on elliptic curve pairings, (2004)
[2]  
Al-Riyami S.S., Paterson K.G., Certificateless public key cryptography, Advances in Cryptology - ASIACRYPT 2003, 2894, pp. 452-473, (2003)
[3]  
Benaloh J., Leichter J., Generalized secret sharing and monotone functions, Advances in Cryptology - CRYPTO '88, 403, pp. 27-35, (1990)
[4]  
Blake I.F., Seroussi G., Smart N.P., Advances in Elliptic Curve Cryptography, (2005)
[5]  
Boneh D., Franklin M., Identity based encryption from the Weil pairing, Advances in Cryptology - CRYPTO 2001, 2139, pp. 213-229, (2001)
[6]  
Boneh D., Lynn B., Shacham H., Short signatures from the Weil pairing, Advances in Cryptology - ASIACRYPT 2001, 2248, pp. 514-532, (2001)
[7]  
Bradshaw R.W., Holt J.E., Seamons K.E., Concealing complex policies with hidden credentials, Proceedings of the 11th ACM Conference on Computer and Communications Security, (2004)
[8]  
Chen L., Harrison K., Soldera D., Smart N.P., Applications of multiple trust authorities in pairing based cryptosystems, Infrastructure Security: InfraSec 2002, 2437, pp. 260-275, (2002)
[9]  
Duursma I., Lee H.-S., Tate pairing implementation for hyperelliptic curves y<sup>2</sup> = x<sup>p</sup> - x. + d, Advances in Cryptology - ASIACRYPT 2003, 2894, pp. 111-123, (2003)
[10]  
Fujisaki E., Okamoto T., Secure integration of asymmetric and symmetric encryption schemes, Advances in Cryptology - CRYPTO '99, 1666, pp. 537-554, (1999)