Test of independence and randomness based on the empirical copula process

被引:4
作者
Christian Genest
Bruno Rémillard
机构
[1] Université Laval,Département de mathématiques et de statistique
[2] HEC,Service d'enseignement des méthodes quantitatives de gestion
来源
Test | 2004年 / 13卷
关键词
Copula; Cramér-von Mises statistic; empirical process; Möbius inversion formula; pseudo-observations; semi-parametric models, serial dependence; tesis of independence; 60F05; 2E20;
D O I
暂无
中图分类号
学科分类号
摘要
Deheuvels (1981a) described a decomposition of the empirical copula process into a finite number of asymptotically mutually independent sub-processes whose joint limiting distribution is tractable under the hypothesis that a multivariate distribution is equal to the product of its margins. It is proved here that this result can be extended to the serial case and that the limiting processes have the same joint distribution as in the non-serial setting. As a consequences, linear rank statistics have the same asymptotic distribution in both contexts. It is also shown how these facts can be exploited to construct simple statistics for detecting dependence graphically and testing it formally. Simulation are used to explore the finite-sample behavior of these statistics, which are found to be powerful against varions types of alternatives.
引用
收藏
页码:335 / 369
页数:34
相关论文
共 52 条
[1]  
Barbe P.(1996)On Kendall's process Journal of Multivariate Analysis 58 197-229
[2]  
Genest C.(1961)Distribution free tests of independence based on the sample distribution function The Annals of Mathematical Statistics 32 485-498
[3]  
Ghoudi K.(1992)Chaos, fractals and statistics (with discussion) Statistical Science 7 49-121
[4]  
Rémillard B.(1978)A model for association in bivariate life tables and its application in epidemiological studies of familiaal tendency in chronic disease incidence Biometriko 65 141-151
[5]  
Blum J. R.(1979)La fonction de dépendance empirique et ses propriétés: Un test non paramétrique d'indépendance Académie Royale de Belgique, Bulletin de la Classe des Sciences, 5ième série 65 274-292
[6]  
Kiefer J.(1981)An asymptotic decomposition for multivariate distribution-free tests of independence Journal of Multivariate Analysis 11 102-113
[7]  
Rosenblatt M.(1981)A Kolmogorov-Smirnov type test for independence and multivariate samples Revue Roumaine de Mathématiques Pures et Appliquées 26 213-226
[8]  
Chatterjee S.(1981)A non parametric test for independence Publications de l'Institut de Statistique de l'Université de Paris 26 29-50
[9]  
Yilmaz M. R.(1996)Testing serial independence using the sample distribution function Journal of Time Series Analysis 17 271-285
[10]  
Clayton D. G.(1975)Sur des tests d'indépendance “indépendants de la loi Comptes Rendus de l'Académie des Sciences de Paris, Série A 281 1103-1104