The Kantowski-Sachs Space-Time in Loop Quantum Gravity

被引:52
作者
Leonardo Modesto
机构
[1] Université de la Méditerranée,Centre de Physique Théorique de Luminy
关键词
quantum gravity; loop quantum gravity; quantum aspects of black hole; black hole singularity;
D O I
10.1007/s10773-006-9188-y
中图分类号
学科分类号
摘要
We extend the ideas introduced in the previous work to a more general space-time. In particular we consider the Kantowski-Sachs space time with space section with topology \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R \times S^2$$\end{document}. In this way we want to study a general space time that we think to be the space time inside the horizon of a black hole. In this case the phase space is four dimensional and we simply apply the quantization procedure suggested by loop quantum gravity and based on an alternative to the Schroedinger representation introduced by H. Halvorson. Through this quantization procedure we show that the inverse of the volume density and the Schwarzschild curvature invariant are upper bounded and so the space time is singularity free. Also in this case we can extend dynamically the space time beyond the classical singularity.
引用
收藏
页码:2235 / 2246
页数:11
相关论文
共 27 条
[1]  
Ashtekar A.(2004)Background independent quantum gravity: A status report Classical and Quantum Gravity 21 R53-3362
[2]  
Ashtekar A.(2005)Black hole evaporation: A paradigm Classical and Quantum Gravity 22 3349-1062
[3]  
Bojovald M.(2003)Quantum gravity, shadow states, and quantum mechanics Classical and Quantum Gravity 20 1031-268
[4]  
Ashtekar A.(2003)Mathematical structure of loop quantum cosmology Advancement in Theoretical and Mathematical Physics 7 233-350
[5]  
Fairhurst S.(2001a)Inverse scale factor in isotropic quantum geometry Physical Review D 64 084018-109
[6]  
Willis J.(2001b)Loop quantum cosmology IV: Discrete time evolution Classical and Quantum Gravity 18 1071-1745
[7]  
Ashtekar A.(2002)Lectures on quantum cosmology Lecture Notes in Physics 592 318-264
[8]  
Bojowald M.(1998)On the consistency of the constraint algebra in spin network quantum gravity International Journal of Modern Physics D 7 97-1247
[9]  
Lewandowski J.(1990)Steeps-descent contours in the path-integral approach to quantum cosmology. III. A general method with applications to anisotropic minisuperspace models Physical Review D 42 3997-undefined
[10]  
Bojowald M.(1966)Disappearance of the black hole singularity in quantum gravity Journal of Mathematical Physics 7 443-undefined