Least Squares Support Vector Machine Classifiers

被引:39
作者
J.A.K. Suykens
J. Vandewalle
机构
[1] Katholieke Universiteit Leuven,Department of Electrical Engineering
来源
Neural Processing Letters | 1999年 / 9卷
关键词
classification; support vector machines; linear least squares; radial basis function kernel;
D O I
暂无
中图分类号
学科分类号
摘要
In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM's. The approach is illustrated on a two-spiral benchmark classification problem.
引用
收藏
页码:293 / 300
页数:7
相关论文
共 10 条
  • [1] Ridella S.(1997)Circular back propagation networks for classification IEEE Transactions on Neural Networks 8 84-97
  • [2] Rovetta S.(1997)Comparing support vector machines with Gaussian kernels to radial basis function classifiers IEEE Transactions on Signal Processing 45 2758-2765
  • [3] Zunino R.(undefined)undefined undefined undefined undefined-undefined
  • [4] Schölkopf B.(undefined)undefined undefined undefined undefined-undefined
  • [5] Sung K.-K.(undefined)undefined undefined undefined undefined-undefined
  • [6] Burges C.(undefined)undefined undefined undefined undefined-undefined
  • [7] Girosi F.(undefined)undefined undefined undefined undefined-undefined
  • [8] Niyogi P.(undefined)undefined undefined undefined undefined-undefined
  • [9] Poggio T.(undefined)undefined undefined undefined undefined-undefined
  • [10] Vapnik V.(undefined)undefined undefined undefined undefined-undefined