Dynamic programming and mean-variance hedging

被引:17
作者
Jean Paul Laurent
Huyên Pham
机构
[1] CREST,
[2] Laboratoire de Finance-Assurance,undefined
[3] 15 bld. Gabriél Péri,undefined
[4] F-92245 Malakoff Cedex,undefined
[5] France (e-mail: jpl@ensae.fr) ,undefined
[6] Equipe d'Analyse et de Mathématiques Appliquées,undefined
[7] Université Marne-la-Vallée,undefined
[8] Cité Descartes,undefined
[9] 5 Boulevard Descartes,undefined
[10] Champs-sur-Marne,undefined
[11] F-77454 Marne-la-Vallée Cedex 2,undefined
[12] France and CREST,undefined
[13] Laboratoire de Finance-Assurance (e-mail: pham@math.univ-mlv.fr) ,undefined
关键词
Key words: Hedging, incomplete markets, dynamic programming, hedging numéraire, variance-optimal martingale measure JEL classification: G11, G12. Mathematics Subject Classification (1991): 90A09, 60H30, 90C39.;
D O I
10.1007/s007800050053
中图分类号
学科分类号
摘要
We consider the mean-variance hedging problem when asset prices follow Itô processes in an incomplete market framework. The hedging numéraire and the variance-optimal martingale measure appear to be a key tool for characterizing the optimal hedging strategy (see Gouriéroux et al. 1996; Rheinländer and Schweizer 1996). In this paper, we study the hedging numéraire \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde a$\end{document} and the variance-optimal martingale measure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde P$\end{document} using dynamic programming methods. We obtain new explicit characterizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde a$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde P$\end{document} in terms of the value function of a suitable stochastic control problem. We provide several examples illustrating our results. In particular, for stochastic volatility models, we derive an explicit form of this value function and then of the hedging numéraire and the variance-optimal martingale measure. This provides then explicit computations of optimal hedging strategies for the mean-variance hedging problem in usual stochastic volatility models.
引用
收藏
页码:83 / 110
页数:27
相关论文
empty
未找到相关数据