Separating Decision Diffie–Hellman from Computational Diffie–Hellman in Cryptographic Groups
被引:9
作者:
Antoine Joux
论文数: 0引用数: 0
h-index: 0
机构:DCSSI Crypto Lab,
Antoine Joux
Kim Nguyen
论文数: 0引用数: 0
h-index: 0
机构:DCSSI Crypto Lab,
Kim Nguyen
机构:
[1] DCSSI Crypto Lab,
[2] 51 Bd de Latour Maubourg,undefined
[3] F-75700 Paris 07 SP,undefined
[4] Institut für experimentelle Mathematik,undefined
[5] Universität GH Essen,undefined
[6] Ellernstrasse 29,undefined
[7] 45326 Essen,undefined
来源:
Journal of Cryptology
|
2003年
/
16卷
关键词:
Discrete logarithm;
Diffie–Hellman;
Elliptic curve;
Weil pairing;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In many cases the security of a cryptographic scheme based on
computational Diffie–Hellman does in fact rely on the hardness of the
decision Diffie–Hellman problem. In this paper we construct concrete
examples of groups where the stronger hypothesis, hardness of the decision
Diffie–Hellman problem, no longer holds, while the weaker hypothesis,
hardness of computational Diffie–Hellman, is equivalent to the
hardness of the discrete logarithm problem and still seems to be a
reasonable hypothesis.