Ventral hernia repair using allogenic acellular dermal matrix in a swine model

被引:133
作者
Silverman R.P. [1 ]
Li E.N. [1 ]
Holton III L.H. [1 ]
Sawan K.T. [2 ]
Goldberg N.H. [1 ]
机构
[1] University of Maryland, Division of Plastic Surgery, University of Maryland Med. Center, Baltimore, MD 21201
[2] Division of Plastic Surgery, Univ. of Oklahoma Health Sci. Center, Oklahoma City, OK
关键词
Abdominal wall reconstruction; Acellular dermal matrix; ePTFE; Incisional hernia; Ventral hernia;
D O I
10.1007/s10029-004-0241-6
中图分类号
学科分类号
摘要
Background: This study was designed to assess the long-term efficacy of allogenic acellular dermal matrix (ADM) used as an interpositional graft for ventral hernia repair in a swine model. Methods: We created 12×4-cm full-thickness abdominal wall defects in 22 Yucatan miniature pigs. The defect was repaired with either two 6×4-cm pieces of AlloDerm (acellular dermal matrix processed from pig skin in order to avoid a xenogenic response, LifeCell Corporation, Branchburg, NJ USA) (n = 12), or expanded polytetrafluoroethylene mesh (ePTFE) (Gore-Tex, W.L. Gore & Associates, Inc., Newark, DE USA) (n = 10). In six pigs, a separate 3-cm fascial incision was made, which was then suture repaired as a control for tensiometry testing. The surgical sites were evaluated at either 3 months or 9 months for the presence of a hernia, stretching of the implant, adhesions, vascularity, and biomechanical strength. Results: Two hernias occurred in both the ADM a nd the ePTFE groups. There was minimal stretching of the implants and minimal adhesions in both groups. Fluorescein testing and histology indicated vascular ingrowth into the ADM. There was no statistical difference between the mean breaking strengths of the ADM-fascial interface (106.5 N± SD 40.1), the interface between two pieces of ADM (149.1 N± SD 76.7), and the primary fascial repair (108.1 N± SD 20.9) at 9 months. The ADM-fascial interface had a significantly higher breaking strength than that of the ePTFE-fascia interface (66.1 N± SD 30.1) (P=0.017, t-test, P=0.043 Wilcoxon rank sum test). Conclusions: In this study, we were unable to demonstrate a difference between ADM and ePTFE in their ability to repair ventral hernias at 9 months in a swine model. The ADM additionally supports vascular ingrowth and exhibits increased breaking strength at the fascia-implant interface. © Springer-Verlag 2004.
引用
收藏
页码:336 / 342
页数:6
相关论文
共 36 条
[1]  
Mudge M., Hughes L.E., Incisional hernia: A 10-year prospective study of incidence and attitudes, Br. J. Surg., 72, (1985)
[2]  
Santora T., Roslyn J.J., Incisional hernia, Surg. Clin. North Am., 73, pp. 557-570, (1993)
[3]  
Sugerman H.J., Kellum Jr. J.M., Reines H.D., DeMaria E.J., Newsome H.H., Lowry J.W., Greater risk of incisional hernia with morbidly obese than steroid-dependent patients and low recurrence with prefascial polypropylene mesh, Am. J. Surg., 171, pp. 80-84, (1996)
[4]  
van der Linden F.T.P.M., Van Vroonhoven T.J.M.V., Long-term results after surgical correction of incisional hernia, Neth. J. Surg., 40, pp. 127-129, (1988)
[5]  
Paul A., Korenkov M., Peters S., Kohler L., Fischer S., Troidl H., Unacceptable results of the Mayo procedure for repair of abdominal incisional hernias, Eur. J. Surg., 164, pp. 361-367, (1998)
[6]  
Anthony T., Bergen P.C., Kim L.T., Henderson M., Fahey T., Rege R.V., Turnage R.H., Factors affecting recurrence following incisional herniorrhaphy, World J. Surg., 24, pp. 95-101, (2000)
[7]  
Manninen M.J., Lavonius M., Perhomiemi V.J., Results of incisional hernia repair: A retrospective study of 172 unselected hernioplasties, Eur. J. Surg., 157, pp. 29-31, (1991)
[8]  
Luijendijk R.W., Hop W.C., van den Tol M.P., de Lange D.C., Braaksma M.M., IJzermans J.N., Boelhouwer R.U., de Vries B.C., Salu M.K., Wereldsma J.C., Bruijninckx C.M., Jeekel J., A comparison of suture repair with mesh repair for incisional hernia, N Engl. J. Med., 343, pp. 392-398, (2000)
[9]  
Liakakos T., Karanikas I., Panagiotidis H., Dendrinos S., Use of Marlex mesh in the repair of recurrent incisional hernia, Br. J. Surg., 81, pp. 248-249, (1994)
[10]  
Folkman J., Shing T., Angiogenesis, J. Biol. Chem., 267, pp. 10931-10934, (1992)