Zebrafish aplnra functions in epiboly

被引:7
作者
Nornes S. [1 ]
Tucker B. [1 ]
Lardelli M. [1 ]
机构
[1] Centre for the Molecular Genetics of Development and Discipline of Genetics, School of Molecular and Biomedical Science, University of Adelaide, 5005, SA
基金
澳大利亚研究理事会;
关键词
Zebrafish Embryo; Morpholino; Yolk Cell; Tail Extension; Adaxial Cell;
D O I
10.1186/1756-0500-2-231
中图分类号
学科分类号
摘要
Background. The zebrafish, Danio rerio, possesses the paralogous genes aplnra and aplnrb that are duplicates of an ancestral orthologue of the human APLNR gene encoding a G-protein coupled receptor that binds the peptide ligand APELIN and is required for normal cardiovascular function. aplnrb is required for migration of cells contributing to heart development in zebrafish embryos. aplnra is transcribed in a complex pattern during early development but its function in embryogenesis is largely unknown. Findings. Blockage of translation of aplnra mRNA in zebrafish embryos results in retarded or failed epiboly with the blastoderm apparently disconnected from the nuclei of the yolk syncytial layer. Gastrulation is also defective. Failure of correct tail extension is observed with ectopic structures resembling somites positioned dorsal to the spinal cord. Conclusion. aplnra, unlike its duplicate aplnrb, is essential for normal epiboly, although this function appears to be independent of signalling activated by zebrafish Apelin. The defects in epiboly caused by loss of aplnra activity appear, at least partially, to be due to a requirement for aplnra activity in the yolk syncytial layer. © 2009 Nornes et al; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 15 条
[1]  
Cox C.M., D'Agostino S.L., Miller M.K., Heimark R.L., Krieg P.A., Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo, Dev Biol, 296, 1, pp. 177-189, (2006)
[2]  
Kalin R.E., Kretz M.P., Meyer A.M., Kispert A., Heppner F.L., Brandli A.W., Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis, Dev Biol, 305, 2, pp. 599-614, (2007)
[3]  
Kidoya H., Ueno M., Yamada Y., Mochizuki N., Nakata M., Yano T., Fujii R., Takakura N., Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis, EMBO J, 27, 3, pp. 522-534, (2008)
[4]  
Scott I.C., Masri B., D'Amico L.A., Jin S.W., Jungblut B., Wehman A.M., Baier H., Audigier Y., Stainier D.Y., Zeng X.X., Et al., The g protein-coupled receptor agtrl1b regulates early development of myocardial progenitors Apelin and its receptor control heart field formation during zebrafish gastrulation, Dev Cell, 12, 3, pp. 403-413, (2007)
[5]  
Zeng X.X., Wilm T.P., Sepich D.S., Solnica-Krezel L., Apelin and its receptor control heart field formation during zebrafish gastrulation, Dev Cell, 12, 3, pp. 391-402, (2007)
[6]  
Szokodi I., Tavi P., Foldes G., Voutilainen-Myllyla S., Ilves M., Tokola H., Pikkarainen S., Piuhola J., Rysa J., Toth M., Et al., Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility, Circ Res, 91, 5, pp. 434-440, (2002)
[7]  
Cheng X., Cheng X.S., Pang C.C., Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats, Eur J Pharmacol, 470, 3, pp. 171-175, (2003)
[8]  
Choe H., Farzan M., Konkel M., Martin K., Sun Y., Marcon L., Cayabyab M., Berman M., Dorf M.E., Gerard N., Et al., The orphan seven-transmembrane receptor apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1, J Virol, 72, 7, pp. 6113-6118, (1998)
[9]  
Tucker B., Hepperle C., Kortschak D., Rainbird B., Wells S., Oates A.C., Lardelli M., Zebrafish Angiotensin II Receptor-like 1a (agtrl1a) is expressed in migrating hypoblast, vasculature, and in multiple embryonic epithelia, Gene Expr Patterns, 7, 3, pp. 258-265, (2007)
[10]  
Lee D.K., George S.R., O'Dowd B.F., Unravelling the roles of the apelin system: Prospective therapeutic applications in heart failure and obesity, Trends Pharmacol Sci, 27, 4, pp. 190-194, (2006)