Building of GL(m, D) and centralizers

被引:22
作者
Broussous P. [1 ]
Lemaire B. [2 ]
机构
[1] Département De Mathématiques, Université De Poitiers, BD Marie Et Pierre Curie, 86962 Futuroscope Chasseuneuil Cedex
[2] Mathématique, Université De Paris-Sud, Bat. 425
关键词
Topological Group; Field Extension; Division Algebra; Central Division; Central Division Algebra;
D O I
10.1007/BF01253463
中图分类号
学科分类号
摘要
Let G = GL(m, D) where D is a central division algebra over a commutative nonarchimedean local field F. Let E/F be a field extension contained in M(m, D). We denote by I (resp. IE) the nonextended affine building of G (resp. of the centralizer of E× in G). In this paper we prove that there exists a unique GE-equivariant affine map jE: IE → I. It is injective and its image coincides with the set of E×-fixed points in I. Moreover, we prove that jE is compatible with the Moy-Prasad filtrations.
引用
收藏
页码:15 / 50
页数:35
相关论文
共 19 条
[1]  
Broussous P., Minimal strata for GL(m, D), J. reine Angew. Math., 514, pp. 199-236, (1999)
[2]  
Bushnell C.J., Kutzko P., The admissible dual of GL<sub>N</sub> via compact open subgroups, Annals of Math. Studies, 129, (1993)
[3]  
Bushnell C.J., Kutzko P., (1996)
[4]  
Bushnell C.J., Kutzko P., Smooth representations of reductive p-adic groups: Structure theory via types, (1996)
[5]  
Bruhat F., Tits J., Groupes réductifs sur un corps local I. Données radicielles valuées, Publ. Math. I.H.E.S., 41, pp. 5-252, (1972)
[6]  
Bruhat F., Tits J., Groupes réductifs sur un corps local, II. Sehémas en groupes. Existence d'une donnée radicielle valuée, Publ. Math. I.H.E.S., 60, pp. 5-184, (1984)
[7]  
Bruhat F., Tits J., Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France, 112, pp. 259-301, (1984)
[8]  
Curtis C.W., Reiner I., Methods of Representation Theory, 1, (1990)
[9]  
Frohlich A., Principal orders and embedding of local fields in simple algebras, Proc. London Math. Soc., 54, 3, pp. 247-266, (1987)
[10]  
Howe R., Tamely ramified supercuspidal representations of GL<sub>n</sub>, Pacific J. Math., 73, 2, pp. 437-460, (1977)