A bijection between Littlewood-Richardson tableaux and rigged configurations

被引:64
作者
Kirillov A.N. [1 ]
Schilling A. [3 ,4 ]
Shimozono M. [2 ]
机构
[1] Division of Mathematics, Graduate School of Science, Hokkaido University, Sapporo
[2] Department of Mathematics, Virginia Tech., Blacksburg
[3] Instituut voor Theoretische Fysica, Universiteit van Amsterdam, 1018 XE Amsterdam
[4] Department of Mathematics, University of California, Davis, CA 95616-8633, One Shields Avenue
基金
美国国家科学基金会;
关键词
Generalized Kostka polynomials; Littlewood-Richardson tableaux; Rigged configurations;
D O I
10.1007/s00029-002-8102-6
中图分类号
学科分类号
摘要
We define a bijection from Littlewood-Richardson tableaux to rigged configurations and show that it preserves the appropriate statistics. This proves in particular a quasi-particle expression for the generalized Kostka polynomials KλR(q) labeled by a partition λ and a sequence of rectangles R. The generalized Kostka polynomials are q-analogues of multiplicities of the irreducible GL(n, ℂ)-module Vλ of highest weight λ in the tensor product VR1 ⊗ ... ⊗ VRL. © Birkhäuser Verlag, Basel, 2002.
引用
收藏
页码:67 / 135
页数:68
相关论文
共 29 条
[1]  
Berkovich A., Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series M(v, v + 1), Exact Results. Nucl. Phys. B, 431, pp. 315-348, (1994)
[2]  
Bouwknegt P., Ludwig A.W.W., Schoutens K., Spinon bases, Yangian symmetry and fermionic representations of Virasoro characters in conformal field theory, Phys. Lett., B338, pp. 448-456, (1994)
[3]  
Berkovich A., McCoy B.M., Schilling A., Rogers-Schur-Ramanujan type identities for the M(p,p′) minimal models of conformal field theory, Commun. Math. Phys., 191, pp. 325-395, (1998)
[4]  
Strings, paths and standard tableaux, Int. J. Mod. Phys., A13, pp. 501-522, (1998)
[5]  
Foda O., Lee K.S.M., Welsh T.A., A Burge tree of Virasoro-type polynomial identities, Internat. J. Modern Phys. A, 13, pp. 4967-5012, (1998)
[6]  
Fomin S., Greene C., A Littlewood-Richardson miscellany, European J. Combin., 14, pp. 191-212, (1993)
[7]  
Hatayama G., Kirillov A.N., Kuniba A., Okado M., Takagi T., Yamada Y., Character formulae of s-fractur sign and l-fractur signn-modules and inhomogeneous paths, Nucl. Phys., B536, pp. 575-616, (1998)
[8]  
Hatayama G., Kuniba A., Okado M., Takagi T., Yamada Y., Remarks on fermionic formula, Contemp. Math., 248, pp. 243-291, (1999)
[9]  
Kedem R., Klassen T.R., McCoy B.M., Melzer E., Fermionic quasi-particle representations for characters of (G(1)) <sub>1</sub> x (G(1))<sub>1</sub>/(G(1))2, Phys. Lett. B, 304, pp. 263-270, (1993)
[10]  
Kedem R., Klassen T.R., McCoy B.M., Melzer E., Fermionic sum representations for conformai field theory characters, Phys. Lett. B, 307, pp. 68-76, (1993)